
Formalizing Production Systems

with Rule-Based Ontologies

Mart́ın Rezk1 and Michael Kifer2

1 KRDB Research Center, Free University of Bozen-Bolzano, Bolzano, Italy
rezk@inf.unibz.it

2 Department of Computer Science, Stony Brook University, NY 11794-4400, U.S.A.
kifer@cs.stonybrook.edu

Abstract. In this paper we proposed a new semantics for the combina-
tion of production systems with arbitrary DL ontologies. Unlike previ-
ous approaches, the semantics presented here allow looping rules and can
handle inconsistencies produced by the interaction of the rule actions and
the ontology. We also define a sound embedding of such semantics, re-
stricted to rule-based DL Ontologies, into Transaction Logic with partial
action definitions (T RPAD). This reduction adds a declarative semantics
to the combination. To model production systems in T RPAD, we extend
T RPAD with default negation and define the well-founded semantics for it.

Keywords: Transaction Logic, Well-founded semantics, Ontologies,
Production Systems, Knowledge Representation.

1 Introduction

Production systems (PS) are one of the oldest knowledge representation para-
digms that are still popular today. Production systems are widely used in bio-
medical information systems, to enforce constraints on databases, to model
business processes, accounting, etc.

Such systems consist of a set of production rules that rely on forward chaining
reasoning to update the underlying database, called working memory. Tradition-
ally, PS have had only operational semantics, where satisfaction of rule condi-
tions is checked using pattern matching, and rule actions produce assertion and
deletions of facts from the working memory. PS syntax and semantics have been
standardized as W3C’s Production Rule Dialect of the Rule Interchange For-
mat (RIF-PRD) [14]. The RIF-PRD specification has a number of limitations,
however. First, it omits certain important primitives that are found in many
commercial production systems such as IBM’s JRules [19]. The FOR-loop and
the while-loop constructs are examples of such an omission. Second, RIF-PRD
still does not integrate with ontologies [3,18].

To illustrate the need for ontology integration, consider a set PS that keeps
a number of clinical databases that are compliant with the health insurance
regulations. The clinical record of each patient together with other data must
be accessible by all the clinics in the network. This needs a shared vocabulary

T. Lukasiewicz and A. Sali (Eds.): FoIKS 2012, LNCS 7153, pp. 332–351, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Production Rules and Transaction Logic 333

that, in this case, is defined in a shared DL ontology. However, each PS can
have extra concepts outside the ontology, which are meant for local use only.
The following production rules state that (i) if a doctor D requests a DNA test
T to be performed for patient P , then the system records that P is taking the
test T ; (ii) if a patient gets cured, then she cannot be unhealthy; and (iii) if a
patient receives medicine, then she gets cured.

r1 : Forall D,P, T : if requested(D,P, T) ∧ dnaT(T) then Assert(takesT(P, T))
r2 : For P : cured(P) do Retract(neg healthy(P))
r3 : Forall P : if rcv meds(P) then Assert(cured(P))

The DL ontology that defines the shared concepts and implements different
constraints is as follows

flu � neg healthy dnaT � neg virusT ∃takesT.neg virusT � healthy

The DL axioms say that a patient with a flu is not a healthy patient, that
DNA tests do not search for viruses, and that if a person is taking a test not
related with any virus disease, then we can conclude that she is healthy. Here
we are using explicit negation neg [22] to say that patients taking the DNA test
should not be considered unhealthy. This type of negation is the preferred way of
adding explicit negative information in rule-based knowledge representation; it is
weaker than classical negation, does not add complexity to the logic, and makes
knowledge representation more natural. The Forall construct in r1 should not
be confused with the For construct in r2. The former is just a way RIF-PRD
declares variables used in the body of a rule. The latter is a FOR-loop extension
found in commercial systems, but not in RIF-PRD.

The complexity of the regulations in our example makes it difficult to de-
termine whether executing a production rule leaves the database in a compli-
ant state. Suppose we have the following database WM0 = {requested(Smith,
Laura, pcr), flu(Laura), dnaT(pcr), rcv meds(Laura)}.

This example raises several question: (i) Suppose that we execute r3 with P
instantiated with Laura. How do we interpret the retraction executed by r2,
(with P again instantiated with Laura) given that neg healthy(Laura) is inferred
by the ontology, (ii) how to interpret the rule conditions of r1 and r2 given the
open world semantics of DL, and (iii) how do we treat the inconsistency that
results after execution of rule r1 in WM0? (Observe that in the state resulting
from execution of r1 in WM0 we can infer healthy(Laura) and neg healthy(Laura).)

To answer these questions we need to define a precise semantics (both model-
theoretic and computational) to the combination of rules, ontologies, and pro-
duction systems,

Our contribution in this paper is three-fold: (i) a new semantics for production
systems augmented with DL ontologies that includes looping-rules, and can
handle inconsistency; (ii) a sound embedding of the combination of PS and rule-
based ontologies into Transaction Logic with partially defined actions (abbr.,
T RPAD) [25], which provides a model-theoretic semantics to the combination;
(iii) an extension of T RPAD with default negation under a variant of the well-
founded semantics [29] for T RPAD.

334 M. Rezk and M. Kifer

Transaction logic [5,6,7] was chosen because it provides a natural platform
that satisfies most of the requirements to model the combination of PS and
ontologies. It was designed from the outset as a formalism for declarative spec-
ification of complex state-changing transactions in logic programming, and it
has been successfully used for planning [6], knowledge representation [8], active
databases [6], event processing [1], workflow management and Semantic Web
services [11,12,27,28], and as a declarative alternative to non-logical features
in Prolog, like the assert and retract operators [7], which are also present in
production systems.

Our formalization is significantly more general than RIF-PRD or other exist-
ing formalizations of production rules in that it supports wider ontology inte-
gration and covers important extensions that exist in commercial systems such
as the aforesaid FOR-loop.

This paper is organized as follows. Section 2 briefly surveys previous results on
the combination of PS and ontologies, and on the reduction of PS to formalisms
with denotational semantics. Section 3 presents the necessary background on
first order logic and description logic. Section 4 introduces an operational seman-
tics for production systems augmented with DL ontologies. Section 5 augment
T RPAD with default negations, and provides a well-founded semantics for such
extension. Section 6 provides a reduction from the semantics proposed here to
T RPAD and presents soundness results for this reduction. Section 7 concludes the
paper. Proofs of the main results and further details are found in [24].

2 Related Work

In this section we compare our approach with other literature on the declarative
semantics for production systems and on the operational and declarative seman-
tics for the combination of PS and ontologies. The work described in [26,13]
provides an operational and model-theoretic semantics to the combination of PS
and ontologies. The model-theoretic semantics is given by an embedding of PS
into fix-point logic. However, they cannot handle looping rules, their semantics
cannot handle inconsistencies, their interpretation of retraction of DL facts is not
intuitive since a fact can remain true after being deleted, and their reduction
to a declarative formalism is considerably more complex than the one presented
here. In [21,31], the goal is to devise languages for unifying some aspects of active
rules, logic rules, and production systems. They do not deal with considerably
more complex standard languages such as production systems augmented with
ontologies and looping rules. In particular, [21,31] do not show how to embed
production systems into those languages, although they provide some examples
showing how typical production rules can be expressed in their language. In [23]
the authors only allow a very restricted type of production systems: stratified
PS. Such PS are much weaker that the ones formalized here, and again, they
do not consider ontologies. In addition, they do not tackle the problem of the
integration with ontologies. In [10,4], the authors reduce the semantics of PS to
logic programming (LP). Their reduction is considerably more complex and less

Production Rules and Transaction Logic 335

compact than ours—it results in an infinite number of rules. In addition, they use
stable models semantics which has much higher computational complexity than
the well founded semantics used here. Given the complexity of such a reduction,
the proposed integration with LP ontologies is not ideal, since the ontology needs
to be transformed with state arguments and auxiliary predicates. In addition,
neither of them allow looping rules. Finally, [20] presents a new formalism that
combines some aspects of logic rules and production rules. However, negation in
rule conditions1 and looping rules are disallowed. Furthermore, their embedding
into Horn Logic is less clear and compact than our embedding in T RPAD.

3 Preliminaries

In this Section we briefly review the basic notions from Description Logic (DL)
that we will use throughout the paper. Details can be found in [3].

Description Logic is a family of knowledge representation formalisms that
provide a syntax and a model-theoretic semantics for a compact representation
of information. The alphabet of a DL language L includes a countably infinite
disjoint sets of variables V , constant symbols C, and unary and binary predicate
symbols (concepts and roles respectively) P . L includes the logical connectives
�,�,¬, ∀, ∃,�.

A DL knowledge base has two parts: the TBox, with terminological knowledge,
which consists of a number of concept axioms, and the ABox, which consists of
assertions about actual individuals. Concept axioms in the TBox are of the form
C � D, meaning the extension of C is a subset of the extension of D. Concepts
and TBox axioms can be understood as formulas of first-order logic with one
free variable and closed universal formulas respectively. Therefore, the semantics
of DL can be given by its translation to FOL. Details can be found in [3]. To
integrate ontologies with production systems, we will later start using Herbrand
domains and the unique name assumption (UNA). UNA is a commonly made
assumption in DLs literature as well [2].

Therefore, we will use the Herbrand semantics from the outset. As is well-
known, this semantics is equivalent to the general one for universal clausal form.

The semantics defines semantic structures. The domain of a Herbrand seman-
tic structure is called the Herbrand universe U ; in our restricted case it is just
the set of all constants C in the language L. The Herbrand base B is a set of all
ground literals in the language.

Definition 1 (Semantic Structure). A semantic structure I is a triple 〈U ,B,
σ〉, where

– U is the Herbrand universe.
– B is a subset of B.
– σ is a variable assignment, i.e., a mapping V −→ U . �

1 The authors informally claim that negation could be added, but they do not provide
formal details.

336 M. Rezk and M. Kifer

The definitions of satisfaction and entailment are as usual.
In Section 6, we will use DLs that can be embedded into Logic Programming

(LP). In particular, [17] defines a class of DLs called Datalog-rewritable DLs.
This class is interesting in our setting because reasoning with Datalog-rewritable
DLs can be reduced to reasoning with Datalog programs. Due to space limitation,
we will omit the details of these DLs. Complete definitions and the relationship
with OWL can be found in [17].

4 Production Systems Augmented with Ontologies

In this section we propose a new semantics for the combination of production
systems and arbitrary DL ontologies. This approach follows the outline of [26],
but includes looping rules, it can handle inconsistencies produced by the system,
and it gives a more intuitive semantics to the retraction of DL facts.

4.1 Syntax

The alphabet of a language LPS for a production system is defined the same way
as in the case of DL except that now the set of all predicates P is partitioned
into two countably infinite subsets, PPS and PDL. The latter will be used to
represent predicates occurring in the ontology. A term is either a variable or
a constant symbol and, to avoid unnecessary distractions, we will leave out the
various additional forms allowed in RIF, such as frames and the RIF membership
and subclass relations (o#t, t##s). However, they can easily be added without
increasing the complexity of the problem. A atomic formula is a statement of
the form p(t1 . . . tn), where p ∈ P . A literal is either an atom, a formula of the
form neg f where f is a PDL-atom, or a formula of the form ¬f where f is a
PPS-atom.

A condition formula has one of the following forms: a literal l, φ1∧φ2 or φ1∨
φ2 where φ1 and φ2 are condition formulas. Observe that all the rule conditions
in our example are condition formulas. An atomic action is a statement that
has one the following forms:

– assert(l): Adds the literal l to the working memory

– retract(l) :

⎧
⎨

⎩

if p ∈ PPS Removes the atom2l from the working memory
if p ∈ PDL Enforces the literal l to be false in the working

memory �
Beside these elementary actions, RIF also provides actions to change or delete
objects and properties. Such actions can be treated similarly to FOR-rules below
or as sequences of simpler actions, so we leave them out as well.

Definition 2 (Production System Augmented with Ontology). A pro-
duction system augmented with ontology (abbr., production system, or PS) is
a tuple PS = (T , L, R) such that

2 Negative literals with predicate symbols in PPS cannot occur in the working mem-
ories. See Definition 3.

Production Rules and Transaction Logic 337

– T is a DL ontology (TBox) whose predicates belong to PDL;
– L is a set of rule labels, and
– R is a set of rules, which are statements of one of the following forms3

IF-THEN Rule: r : Forall x : if φr(x) then ψr(x) (1)

FOR Rule: r : For x : φr(x) do ψr(x) (2)

where (i) r ∈ L is the above rule’s label, (ii) φr is a condition formula in L
with free variables x, and (iii) ψr(x) is a sequence of atomic actions with free
variables contained in x. �

4.2 Operational Semantics

We now turn to the operational semantics of the combination of PS with ontolo-
gies. In a PS, two different constants represent two different domain elements,
which is called the unique name assumption. In addition, production systems
assume that each constant symbol is also a symbol in the domain of discourse,
i.e., they are dealing with Herbrand domains. It is also worth noting that the
semantics presented in this section does not depend on the specifics of the DL
associated with production systems.

Definition 3 (Working Memory). A working memory, WM, for a PS lan-
guage L is a disjoint union WM = WMPS
 WMDL where WMPS is a set of
ground atoms that use predicate symbols from PPS and WMDL is a set of ground
literals that use predicate symbols from PDL. �

Definition 4 (T -structure). Let T be a DL TBox. A T -structure, I, for a
PS language LPS has the form

I = (WMPS
WMDL
EDL, σ)

where WM = WMPS
WMDL is a working memory, EDL is a set of PDL-literals,
σ is a variable assignment, and (WMDL
EDL, σ) is a model of T . �

We say that (WM, σ), where WM is a working memory, is a prestructure.

Example 1. In our running example, the two disjoint sets composing the initial
working memory WM0 are as follows:

WM0PS = {requested(Smith,Laura, pcr), rcv meds(Laura)}.
WM0DL = {flu(Laura), dnaT(pcr)}

In addition, we can build up a T -structure, I, by pairing any arbitrary assign-
ment σ with WM0 together with {neg healthy(Laura)}. That is, I = (WM0

{neg healthy(Laura)}, σ). �
3 To avoid a misunderstanding, recall that the Forall construct is just a RIF-PRD
syntax for declaring variables; it does not indicate a loop. In contrast, the For-do
construct specifies a loop; it is found only in commercial PS systems, like JRules.

338 M. Rezk and M. Kifer

Definition 5 (Satisfaction). A T -structure I = (WMPS
WMDL
 EDL, σ)
satisfies a literal l, denoted I |= l, iff

– if l is a PPS-atom then lI ∈WMPS

– if l is a PDL-literal then WMDL
EDL |= lI

If φ is a formula of the form ¬φ1, φ1 ∧ φ2, φ1 ∨ φ2 then we define I |= φ
as usual in FOL. A formula φ holds in a prestructure (WM, σ) relative to an
ontology T , denoted T , (WM, σ) |= φ, iff I |= φ for every T -structure of the
form I = (WM
EDL, σ) (That is, WM and σ are fixed but the EDL varies.) �

Example 2. Consider again the initial working memory WM0 from our running
example, and let (WM0, σ) be a prestructure. Observe that (i) the formula
¬requested(Smith,Laura, pcr) holds in (WM0, σ) but (ii) ¬takeT(Laura, pcr) does
not. We can conclude (i) because requested(Smith,Laura, pcr) is a PPS atom and it
does not belong to WM0. On the other hand, (ii) follows since ¬takeT(Laura, pcr)
is a PDL atom and there is a T -structure with working memory WM0 and as-
signment σ that satisfies ¬takeT(Laura, pcr). Note that neg takeT(Laura, pcr) does
not hold in (WM0, σ) either. �

A prestructure is T -consistent if there is a T -structure with the same working
memory and variable assignment, i.e., (WM
 EDL, σ), that does not entail f
and neg f for any atom f . A working memory is T -consistent if it is part of a
T -consistent prestructure.

Definition 6 (Atomic Transition). Let (WM, σ) be a prestructure, t1, t2 be
terms, and α be an action. We say that there is an α-transition from (WM, σ)

to (WM′, σ), denoted (WM, σ)
α� (WM′, σ), iff

– if α = assert(p(t1, t2)) then WM′ = (WM ∪ {p(tσ1 , tσ2)}) \ {neg p(tσ1 , tσ2)}

– if α = retract(p(t1, t2)]) then

⎧
⎨

⎩

if p ∈ PPS WM′ = WM \ {p(tσ1 , tσ2)}
if p ∈ PDL WM′ = (WM∪

{neg p(tσ1 , tσ2)}) \ {p(tσ1 , tσ2)}

where tσ is σ(t) if t is a variable and it is t if t is a constant. �

In the remainder, we will write (WM0, σ)
α1...αn� (WMn, σ), to denote the se-

quence of transitions:

(WM0, σ)
α1� (WM1, σ)

α2� (WM2, σ)
α3� . . .

αn−1� (WMn−1, σ)
αn� (WMn, σ)

If, for some σ and n ≥ 1, there is a transition (WM0, σ)
α1...αn� (WM′, σ) between

prestructures then we will also write WM0
α1...αn� WM′.

Suppose that there is a transition of the form WM
α� ŴM and ŴM is not T -

consistent. The T -consistent result of applying α to WM is the intersection of
all the maximal subsets of ŴM that contain ŴM\WM. This approach is known
in the belief revision literature as When in Doubt Throw it Out (WIDTIO) [30].
This form of belief revision is in line with traditional ontologies and it has been
also used in the context of evolution of DL knowledge bases [9].

Production Rules and Transaction Logic 339

Example 3. Suppose we execute r1 in WM0. We obtain the inconsistent working
memory WM1 = {requested(Smith,Laura, pcr), takeT(Laura, pcr), flu(Laura),
dnaT(pcr), rcv meds(Laura)}. We have two maximal consistent subsets of WM1:

– WM′
1 = {takeT(Laura, pcr), dnaT(pcr), requested(Smith,Laura, pcr),

rcv meds(Laura)}.
– WM′

1 = {takeT(Laura, pcr), flu(Laura), requested(Smith,Laura, pcr),
rcv meds(Laura)}.

Thus, the consistent result is:
WMcons

1 = {takeT(Laura, pcr), requested(Smith,Laura, pcr), rcv meds(Laura)}} �

A consistent transition, denoted (WM0, σ)
α� (WMcons

1 , σ), is a transition
where the result of applying α in (WM0, σ) is replaced the T -consistent result
of that action.

The following definition formalizes the conflict resolution strategy for a given
rule r.

Definition 7 (Fireability). We say that a rule r is fireable in a prestructure
(WM0, σ) if and only if:

– IF-THEN: r is of the form (1), φr(σ(x)) holds in WM0, and there is a T -
consistent transition of the form

(WM0, σ)
ψr(σ(x))� (WMn, σ)

– FOR: r is of the form (2) and there are prestructures (WM0, σ0), (WM1, σ0),
(WM1, σ1) . . . (WMn, σn−1) such that there are T -consistent transitions of
the form

(WM0, σ0)
ψr(σ0(x))� (WM1, σ0)

(WM1, σ1)
ψr(σ1(x))� (WM2, σ1)

...

(WMn−1, σn−1)
ψr(σn−1(x))� (WMn, σn−1)

(3)

where the following conditions hold:
1. Looping: r’s condition holds in each prestructure (WMi, σi) (0 ≤ i ≤

n− 1)
2. No repetitions: For every pair of assignments σi, σj (j �= i and 0 ≤ j, i ≤

n − 1) we have that σi �= σj . That is, assignments cannot be re-used in
the same rule execution.

3. Termination: There is no assignment σ such that it produces a T -consist-
ent transition from WMn, and (WMn, σ) satisfies r’s condition.

In both cases above we say that r causes transition from WM0 to WMn and

denote it as WM0
r
↪→ WMn. �

Recall that a PS applies rules in three steps: (1) pattern matching, (2) conflict
resolution, (3) rule execution, and then it loops back to (1). So far we have

340 M. Rezk and M. Kifer

described only the steps (1) and (3). The next series of definitions describes
Step (2) and show how looping is modeled in the semantics. This semantics does
not depend on any particular conflict resolution strategy so, for concreteness,
in Step (2) we will simply randomly choose a fireable rule from the conflict
resolution set.4 Some other works [4,13] use the same strategy.

The transition graph, TPS, of a production system is a directed labeled
graph, whose set of nodes is the set of all working memories. There is an edge
between two nodes WM and WM′, labeled with α, σ for some action α and

variable assignment σ, iff (WM, σ)
α� (WM′, σ). We will use PWM to denote the

set of all paths (sequences of WMs) in the graph TPS starting at WM.

Definition 8 (Run). A path π in PWM0 is a run R for a production system
PS iff π can be split in paths π1, . . . , πn and there are rules r1 . . . rn such that for

each i = 1 . . . n, WMi,start
ri
↪→ WMi,end, where WMi,start is the first element in

πi and WMi,end is its last. Note that this implies that every πi is a T -consistent
transition. �

5 Extending T RPAD with Default Negation

Transaction Logic with Partially Defined Actions [25], T RPAD, is a logic for pro-
gramming actions and reasoning about them. In this section, we extend T RPAD

with default negation (a.k.a. negation as failure). Default negation allows a logic
system to conclude the negation of any atom that the system unsuccessfully
finishes exploring all possible proofs.

The alphabet of the language LT R of T RPAD is defined the same way as in
the DL case except that now the set of all predicates P is further partitioned
into two subsets, Pfluents and Pactions. The former will be used to represent
facts in database states and the latter for transactions that change those states.
Querying a fluent can be viewed as an action that does not change the underlying

database state. We also add new symbols, � and
a�, where a is an atom whose

predicate symbol is in Pactions. Terms are defined as usual in first order logic.
States are referred to with the help of special constants called state identifiers;
these will be usually denoted by boldface lowercase letters d, d1, d2.

The symbol neg will be used to represent the explicit negation and not will
be used for the default negation. These two symbols are applicable to fluents
only. A fluent literal is either an atomic fluent or it has one of the following
negated forms: neg f , not f , not neg f , where f is an atomic fluent. Literals
that do not mention not are said to be not -free.

Note that in the ontologies one can have both neg - and ¬-literals, while
T RPAD uses neg - and not -literals instead. This is because logic programming
rules cannot use classical negation, while ontologies do not use default negation.

Like the original Transaction Logic, T RPAD contains logical connectives from
the standard FOL (∧,∨, ∀, ∃,) plus two additional logical connectives: the se-
rial conjunction, ⊗, and the modal operator ♦ for hypothetical execution.

4 Recall that the conflict resolution set contains all the rules that can be fired on a
given working memory.

Production Rules and Transaction Logic 341

Informally, a serial conjunction of the form φ⊗ψ represents an action composed
of an execution of φ followed by an execution of ψ. A hypothetical formula,
♦φ, represents an action where φ is tested whether it can be executed at the
current state, but no actual state changes take place. For instance, the first part
of the following formula

♦(insert(infection)⊗ bill insurance⊗ has paid)⊗ insert(takesT)

is a hypothetical test to verify that the patient’s insurance company will pay in
case of an infection after the blood test. The actual blood test is only performed if
the hypothetical test succeeds. In particular, we will use hypothetical executions
to check—before firing a rule—that executing the action associated with such
a rule will not produce an inconsistent state. In this paper we will assume that
hypothetical formulas contain only serial conjunctions of literals.
T RPAD consists of serial-Horn rules, partial action definitions (PADs),

and certain statements about states and actions, which we call premises. The
syntax for all this is shown below, where c is a not -free literal, c1, . . . , cn are
literals (fluents or actions), f is a not -free fluent literal, b1, b2 are conjunctions
of fluent literals or hypotheticals (not -literals are ok), b3, b4 are conjunctions of
not -free fluent literals, d0,d1 . . . are identifiers, and a is an action atom. These
actions will be used to encode the assert and retract actions in production rules,
as well as the laws of inertia (a.k.a. frame axioms). Observe that in this paper
we address the issue of how to express frame axioms, not the larger issue of the
frame problem, which aims to encode one general principle of inertia, rather than
developing particular frame axioms that are suitable in specific applications.

Rules Premises

(i) c← c1 ⊗ · · · ⊗ cn (a serial-Horn rule)
(ii) b1 ⊗ a⊗ b2 → b3 ⊗ a⊗ b4 (a PAD)

(iii) d0 � f (a state-premise)

(iv) d1
a� d2 (a run-premise)

The serial-Horn rule (i) is a statement that defines the literal c, which can be
viewed as a calling sequence for a complex transaction and c1 ⊗ · · · ⊗ cn can
be viewed as a definition for the actual course of action to be performed by
that transaction. If c is a fluent literal then we require that c1, ..., cn are also
fluents. In that case we call c a defined fluent and the rule itself a fluent rule.
Fluent rules are equivalent to regular Horn rules in logic programming. If c is an
action, we will say that c is a compound action, as it is defined by a rule. For
instance, the serial-Horn rule r 1← requested(D,P, T)⊗dnaT(T)⊗insert(takesT(P, T))
defines a compound action r 1. This action behaves in the same way as the rule
r1 in our running example. The PAD (ii) means that if we know that b1 holds
before executing action a and b2 holds after, we can conclude that b3 must have
held before executing a and b4 must hold as a result of a. For instance, the
PAD (healthy(P) ⊗ insert(dnaT(T))) → (insert(dnaT(T)) ⊗ healthy(P)). states that if a
patient is healthy, she remains so after adding a DNA type in the database. This
is a simplified version of an inertial law in T RPAD. To sum up, we distinguish
two kinds of actions: partially defined actions (abbr., pda) and compound
actions. Partially defined actions cannot be defined by rules—they are defined

342 M. Rezk and M. Kifer

by PAD statements only. In contrast, compound actions are defined via serial-
Horn rules but not by PADs. Note that pdas can appear in the bodies of serial-
Horn rules that define compound actions (see r 1 above) and, in this way, T RPAD

can create larger action theories by composing smaller ones in a modular way.
Premises are statements about the initial and the final database states (state

premises) and about possible state transitions caused by partially defined actions
(run-premises). For example, to represent the initial database in our example,
we can use the state premises

d0 � dnaT(pcr) d0 � requested(Smith,Laura, pcr) d0 � flu(Laura)

The run-premise d0

insert(takeT(t))� d1 says that executing the pda insert(takeT(t)) in
the state associated with d0 leads to the state represented by d1.

A transaction is a statement of the form ?- d0
∃X̄φ, where φ = l1 ⊗ · · · ⊗ lk

is a serial conjunction of literals (both fluent and action literals) and X̄ is a list
of all the variables that occur in φ. Transactions in T R generalize the notion
of queries in ordinary logic programming. For instance, ?- d0

flu(Laura)⊗ r 1 is a
transaction that first checks if the patient has a flu in the initial state d0; if so,
the compound action r 1 is executed. If the execution of the transaction cannot
proceed the already executed actions are undone and the underlying database
state remains unchanged. This property is known as atomicity of transactions
in databases. A T RPAD transaction base is a set of serial-Horn rules. A T RPAD

action base is a set of PADs. A T RPAD specification is a tuple (E ,P,S)
where E is a T RPAD action base, P is a T RPAD transaction base, and S is a set
of premises.

Semantics. Now we define a well-founded semantics [29] for T RPAD, which,
to the best of our knowledge, has never been done before. This semantics uses
three truth values, u, t and f, which stand for true, false, and undefined and are
ordered as follows: f < u < t. In addition, we will use the following operator ∼:
∼ t = f, ∼ f = t, ∼ u = u. A database state D (or just a state, for short)
is a set of ground (i.e., variable-free) fluent literals. In the language, states
are referred to via state identifier constants, which were introduced earlier. The
mapping between state identifiers and states is determined by path structures,
defined next.

Definition 9 (Three-valued Partial Herbrand Interpretation). A par-
tial Herbrand interpretation is a mapping H : B �→ {f,u, t} that assigns a
truth value, f,u, or t, to every formula φ in B. �
A central feature in T R is the notion of execution paths, since T R formulas are
evaluated over paths and not over states like in temporal logics [15].

Definition 10 (Three-valued Herbrand Path Structure). A Herbrand
path structure is a mapping I that assigns a partial Herbrand interpretation to
every path. That is, for any path π, I(π) is an interpretation. So, for instance,
I(π)(f) is a truth value for any literal f . This mapping must satisfy the restric-
tion that for each ground base fluent f and database state D:

Production Rules and Transaction Logic 343

I(〈D〉)(f) = t if f ∈ D and I(〈D〉)(neg f) = t if neg f ∈ D
where 〈D〉 is a path that contains only one state, D.
In addition, I includes a mapping of the form:

ΔI : State identifiers −→ Database states
which associates states (i.e., sets of atomic formulas) to state identifiers. We
will usually omit the subscript. �
Intuitively, Herbrand path structures in T R play a role similar to transition
functions in temporal logics by providing a link between states and actions.

An execution path of length k, or a k-path, is a finite sequence of states,
π = 〈D1 . . . Dk〉, where k ≥ 1. A path abstraction is a finite sequence of
state identifiers. If 〈d1 . . . dk〉 is a path abstraction then 〈D1 . . . Dk〉, where
Di = Δ(di), is an execution path. We will also sometimes writeM(〈d1 . . . dk〉)
meaningM(〈Δ(d1) . . . Δ(dk)〉). A split of a path π is a pair of subpaths, π1
and π2, such that π1 = 〈D1 ... Di〉 and π2 = 〈Di ... Dk〉 for some i (1 ≤ i ≤ k).
In this case, we write π = π1 ◦ π2.

In the remainder of this section we will consider ground rules and PADs only.
We can make this assumption without loosing generality because all the variables
in a rule are considered to be universally quantified.

The following definition formalizes the idea that truth of T R formulas is
defined on paths.

Definition 11 (Satisfaction). Let I be a Herbrand path structure, π be a path,
f a ground not -free literal, and G, G1, G2 ground serial goals. We define truth
valuations with respect to the path structure I as follows:

– I(π)(f) was already defined as part of the definition of Herbrand path struc-
tures.5

– I(π)(φ ⊗ ψ) = max{min(I(π1)(φ), I(π2)(ψ)) | π = π1 ◦ π2}
– I(π)(G1 ∧G2) = min(I(π)(G1), I(π)(G2))
– I(π)(not φ) =∼ I(π)(φ)6

– I(π)(�φ) =
{
max{I(π′)(φ) | π′ is a path that starts at D} if π = 〈D〉
f otherwise

– I(π)(f ← G) = t iff I(π)(f) ≥ I(π)(G)
– I(π)(b1 ⊗ α⊗ b2 → b3 ⊗ α⊗ b4) = t iff π has the form 〈D1,D2〉,

I(〈D1,D2〉)(α) = t, and the following holds:

min{min{I(〈D1〉)(f) | f ∈ b1},min{I(〈D2〉)(f) | f ∈ b2}}
≤ min{min{I(〈D1〉)(f) | f ∈ b3},min{I(〈D2〉)(f) | f ∈ b4}}

We write I, π |= φ and say that φ is satisfied on path π in the path structure I
if I(π)(φ) = t. �
In addition, we assume that the language includes the distinguished propositional
constants tπ, and uπ for each T R path π. Observe that since there is an infinite
number of paths, there is an infinite number of such constants. Informally, tπ

(uπ) is a proposition that has the truth value t(respectively u) only on the path
π, and it is false on every other path.

5 Here max is taken over a finite set of truth values {t, f,u}.
6 Recall that ∼ t = f, ∼ f = t, ∼ u = u.

344 M. Rezk and M. Kifer

Definition 12 (Model). A path structure, I, is a model of a formula φ if
I, π |= φ for every path π. In this case we write I |= φ. A path structure, I, is
a model of a set of formulas if it is a model of every formula in the set. A path
structure, I, is a model of a premise-statement σ iff:

– σ is a run-premise of the form d1
α� d2 and I, 〈d1d2〉 |= α; or

– σ is a state-premise d� f and I, 〈d〉 |= f .

I is a model of a specification (E ,P,S) if I is an path structure that satisfies
every PAD in E, every rule in P and every premise in S. �

Example 4. Consider our running example. Let us present the specification Λ =
(E ,P,S), that intuitively encodes the ontology and part of the PS. A complete
encoding will be described in Section 6. Assume that S contains the premises
already introduced in the previous section. The transaction base P contains the
following rules encoding the ontology

neg virusT(T)← dnaT(T)
neg healthy(P)← flu(P)

healthy(P)← takesT(P, T),neg virusT(T)

The action base E contains two PADs encoding the (simplified) inertia laws, and
the definition of the action inserttakeT.

dnaT(P)⊗ inserttakeT(P, T)⊗ not inconsistent→ inserttakeT(P, T)⊗ dnaT(P)
flu(P)⊗ inserttakeT(P, T)⊗ not inconsistent→ inserttakeT(P, T)⊗ flu(P)

rcv meds(P)⊗ inserttakeT(P, T)⊗ not inconsistent→ inserttakeT(P, T)⊗ rcv meds(P)
inserttakeT(P, T)→ inserttakeT(P, T)⊗ takeT(P, T)

From the premises and the rules in Λ, we can see that any path structure I that
models Λ satisfies

I(d0)(dnaT(pcr)) = t
I(d0)(flu(Laura)) = t

I(d0d1)(inserttakeT(Laura, pcr)) = t
I(d0)(rcv meds(Laura)) = t

Now take an interpretation, I1, such that I1(d1)(inconsistent) = f. From the PADs
in E instantiated with pcr, Laura, and Smith, we can conclude that:

I1(d1)(dnaT(pcr)) = t
I1(d1)(flu(Laura)) = t

I1(d1)(takeT(Laura, pcr)) = t
I(d1)(rcv meds(Laura)) = t

and from the rules in the ontology it follows that I1(d1)(healthy) = t and
I1(d1)(neg healthy) = t. Thus, d1 is inconsistent in I1. �

In classical logic programming based on three-valued models, given two Herbrand
partial interpretations N1 and N2, we say that N1 ≤c N2 iff all not -free literals
that are true in N1 are true in N2 and all not -literals that are true in N1 are
true in N2. In addition, we say that N1 �c N2 iff all not -free literals that are
true in N1 are true in N2 and all not -literals that are true in N2 are true in
N1.

Definition 13 (Order on Path Structures). Let M1 and M2 be two Her-
brand path structures, then:

Production Rules and Transaction Logic 345

– Information ordering: M1 ≤M2 if for every path, π, it holds that
M1(π) ≤c M2(π).

– Truth ordering: M1 �M2 if for every path, π, it holds that
M1(π) �c M2(π). �

These two orderings are considerably different. The truth ordering minimize
the amount of truth, by minimizing the atoms that are true and maximizing
the atoms that are false on each path. In contrast, the information ordering
minimizes the amount of information by minimizing both the atoms that are
true and false in each path.

Example 5. Consider a path structure I2 for the specification Λ in Example 4
that coincides with I1 in the path 〈d0〉 but differs in 〈d1〉 as follows:

I2(d1)(dnaT(pcr)) = u
I2(d1)(flu(Laura)) = u

I2(d1)(inconsistent) = u
I2(d1)(takeT(Laura, pcr) = t

It is not hard to see that I2 is also a model of Λ, and moreover I2 � I1. �

Definition 14 (Least Model). A model M of a specification (E ,P,S) is min-
imal with respect to � iff for any other model, N, of (E ,P,S), if N �M then
N = M. The least model of (E ,P,S), denoted LPM(E ,P,S), is a minimal
model that is unique. �

The definition of quotient is key to the notion of well-founded T RPAD models. It
is modeled after [16] with appropriate extensions for PADs.

By T RPAD-quotient of an specification (E ,P,S) modulo a path structure I

we mean a new specification, (E,P,S)
I , which is obtained from (E ,P,S) by first

(i) replacing every literal of the form not b in P ∪ E with tπ or uπ for every
path π such that not b is true (respectively undefined) in I(π), and then (ii)
removing all the remaining rules and PADs that have a literal of the form not b
in the body that is false in I(π).

Next, we give a constructive definition of well-founded models for T RPAD spec-
ifications in terms of a consequence operator. As in the classical case, the con-
sequence operator, Γ , for a T RPAD specification is defined as:

Γ (I) = LPM(
(E ,P,S)

I
)

Now, suppose I∅ is the path structure that maps each path π to the empty
Herbrand interpretation in which all atoms are undefined. The ordinal powers
of the consequence operator Γ are then defined inductively as follows:

– Γ ↑0(I∅) = I∅
– Γ ↑n(I∅) = Γ (Γ ↑n−1(I∅)), if n is a successor ordinal
– Γ ↑n(I∅)(π) =

⋃
j≤n Γ

↑j(I∅)(π), if n is a limit ordinal �

The operator Γ is monotonic with respect to the ≤-order when (E ,P,S) is fixed.
Because of this, the sequence {Γ ↑n(I∅)} has a least fixed point and is computable
via transfinite induction.

346 M. Rezk and M. Kifer

Lemma 1. (see [24]) The operator Γ is monotonic with respect to the infor-
mation order relation ≤ when (E ,P,S) is fixed. That is,

If I ≤ I′ then Γ (I) ≤ Γ (I′)

Definition 15 (Well-founded Model). The well-founded model of a T RPAD

specification (E ,P,S), written WFM((E ,P,S)), is defined as a limit of the se-
quence {Γ ↑n(I∅)}.
WFM((E ,P,S)) is, indeed, a model of (E ,P,S), as shown in [24]. �

Example 6. Consider the specification in Example 4 together with the following
rule defining the fluent inconsistent.

inconsistent← healthy(P), neg healthy(P)
In the specification Λ

I∅
, the sets P, remain the same since they all are not -free.

In E , only the frame axioms change as follows
dnaT(P)⊗ inserttakeT(P, T)⊗ uπ → inserttakeT(P, T)⊗ dnaT(P)
flu(P)⊗ inserttakeT(P, T)⊗ uπ → inserttakeT(P, T)⊗ flu(P)

Since Λ
I∅

is not -free, it has a minimal model [24] Γ ↑1(I∅) = I1. It follows from
the construction of I1 that I1(〈d1〉)(inconsistent) = u. It is not hard to see that
in the WFM of Λ, inconsistent is also undefined in I1(〈d1〉). This is because the
frame axioms are preventing the inconsistency from occurring, but it is still
detected. Without the rules encoding the ontology, inconsistent would be false in
WFM(〈d1〉). �

Theorem 1. (see [24]) WFM((E ,P,S)) is the least model of (E ,P,S).

6 Declarative Semantics

In this section we present the reduction of production systems augmented with
Datalog-rewritable ontologies to T RPAD. Given an alphabet LPS for a production
system PS, the corresponding language LT R of the target T RPAD formulation will
consist of symbols for rule labels, constants, and predicates. In addition, LT R has
the following symbols: (i) the pdas add used and clean used, and for every predicate
p ∈ LPS, Ins p, and del p; (ii) the compound action act; (iii) the defined fluent
inconsistent, and for every rule label r the defined fluent fireable r; (iv) the fluents
inertial and used. Intuitively, the pdas Ins p, and del p above represent the actions
assert and retract. The pdas add used and clean used, and the fluent used, are
used to keep track of the assignments that has already been used to instantiate
a FOR-production rule. The compound action act represents a generic production
rule. The defined fluent fireable r is true if the condition of the rule r holds and the
action produces no inconsistencies. The defined fluent inconsistent is true, if there
is an inconsistency in the state. The fluent inertial is used to distinguish inertial
from non-inertial fluents.

Let ψ = α1 . . . αn be a sequence of atomic actions and φ = f1∧· · ·∧fn∧l1 . . . lm
be a conjunction of atoms (fi) and negative literals (lj). We use ψ̂ and φ̂ to denote

Production Rules and Transaction Logic 347

the T R -serial conjunctions ψ̂ = α̂1 ⊗ · · · ⊗ α̂n and φ̂ = f1 ∧ · · · ∧ fm ∧ ∼ l1 ∧
· · · ∧ ∼ lm, where

α̂i =

{
Ins p(t) if αi = assert(p(t))
del p(t) if αi = retract(p(t))

∼ lj =
{
not f(c) if lj = ¬f(c) ∧ f ∈ PPS
neg f(c) if lj = neg f(c) ∧ f ∈ PDL

In the following, let PS = (T , L, R) be a production system. For simplicity we
assume that conditions in production rules are conjunctions of fluent literals. In
addition, we assume we have an initial working memory, WM0, that repre-
sents the knowledge we have about the initial state of the system.

The reduction, ΛPS, of a PS,WM0 to T RPAD is a T RPAD specification (E ,P,S)
composed of the following PADs (E), rules for defined fluents (P) and premises
(S). From now on we assume that the ontology T is Datalog-rewritable.

1. Ontology T : P contains all the rules from the Datalog rendering of T .
2. Initial Database: The premises below characterize the content of the ini-

tial working memory WM0. For each atomic literal p(t1, . . . , tn) in WM0

d0 � p(t1, . . . , tn) ∈ S d0 � inertial(p(t1, . . . , tn)) ∈ S
We could have written this as inertial(p, t1, . . . , tn) to avoid the appearance of
being second order or that the use of function symbols here is essential.

3. Frame Axioms: The following frame axioms encode the laws of inertia.
They also take care of the actual “removal” of LPS atoms from the working
memory, and the cleaning of the used assignments. Let p be a fluent predicate
and α an action such that either α = add used, or α = clean used or α involves
assertion or retraction of an atom with predicate symbol q, where p �= q. For
any such pair (p, α), E has the following PAD except when α = clean used and
p = used:

(inertial(p(X)) ∧ p(X)) ⊗ α(Y)⊗ not inconsistent→
α(Y)⊗ (p(X) ∧ inertial(p(X)))

Therefore, the application of the action clean used leads to a state that does
not contain any atom with predicate used. If α inserts an atom with predicate
symbol q, the frame axiom needs an additional condition of the form X �= Y
on the left side of the above PAD.

4. Actions: The following rules encode assert and retract in T RPAD:

– Insert: For each predicate p ∈ LPS (whether in PDL or PPS):
{

Ins p(t1, . . . , tn)→ Ins p(t1, . . . , tn)⊗
(p(t1, . . . , tn) ∧ inertial(p(t1, . . . , tn)))

}

∈ E

– Retract: For each predicate p ∈ PDL ,
{

del p(t1, . . . , tn)→ del p(t1, . . . , tn)⊗
(neg p(t1, . . . , tn) ∧ inertial(neg p(t1, . . . , tn)))

}

∈ E

348 M. Rezk and M. Kifer

Recall that the effect of the pda del p for PS atoms is given by the inter-
action with the frame axioms. For instance, if applying deldnaT (pcr) in d1

results in a state d2, it holds that d2 is equal to d1 except for dnaT(pcr),
which is not carried to d2 by the frame axioms. This is equivalent to
remove dnaT(pcr) from d2.

5. Production rules: The following rules encode the production rules.
– For each IF-THEN-rule of the form “r : Forall x : if φr(x) then ψr(x)”

r ← fireable r(X)⊗ ψ̂r(X) ∈ P

– For each FOR-rule of the form “r : For x : φr(x) do ψr(x)”

r ← fireable r(X)⊗ ψ̂i(X)⊗ add used(X)⊗ loop r
loop r← r
loop r← (not ∃X : fireable r(X))⊗ clean used

⎫
⎬

⎭
∈ P

where not ∃X : fireable r(X) above is a shorthand for not p′ such that p′ is a
new predicate defined as p′ ← fireable r(X).

6. Auxiliary Actions and Premises
– Run-Premises : Then for each pda α and a sequence ξ of actions Ins, del,

add used, or clean used, the set of premises S contains the following run-
premise:

dξ
a� dξ,a

For example, d0,Ins p(c)
Insq(d)� d0,Ins p(c),Insq(d)

.

– Inconsistency: For each predicate p ∈ LPS, P contains a rule of the form:

inconsistent← p(X), neg p(X)

– Adding used assignments:

{
add used(Y)→ add used(Y)⊗ used(X) ∧ inertial(used(X))

}
∈ E

– Fireability. The following rules are in P:

If r is an
IF-THEN rule

{
fireable r(X)← φ̂r(X) ∧

(♦ψ̂r(X)⊗ not inconsistent)

If r is a
FOR rule

{
fireable r(X)← φ̂r(X) ∧ not used(X)∧

(♦ψ̂r(X)⊗ not inconsistent)

– Random choice of action: For each rule label ri ∈ L

act← ri ∈ P
To run k rules of the production system we use the transaction:7

?- act⊗ · · · ⊗ act
︸ ︷︷ ︸

k

7 Here we could also use recursion to represent runs of arbitrary length.

Production Rules and Transaction Logic 349

Theorem 2 (Soundness [24]). Let (E ,P,S) be the T RPAD embedding of a PS
configuration. Suppose

E ,P,S,d0 . . .dk |= act⊗ · · · ⊗ act
︸ ︷︷ ︸

m

Then there are working memories WM1 . . .WMm, and rules r1 . . . rm such that

WM0
r1
↪→ WM1

...

WMm−1
rm
↪→ WMm

Example 7. In the previous examples, we worked with a simplified version of the
frame axioms. Let us now show the complete definition of one of them:

inertial(dnaT(T)) ∧ dnaT(T)⊗ inserttakeT(P, T)⊗ not inconsistent→
inserttakeT(P, T)⊗ dnaT(T) ∧ inertial(dnaT(T))

Now we are ready to define the FOR rule r2 and the defined fluent fireable r2

r2 ← fireable r2(P, T)⊗ delneg healthy(P)⊗ add used(P, T)⊗ loop r
loop r ← r2
loop r ← (not ∃P, T : fireable r2(P, T))⊗ clean used

fireable r2(P, T)← takesT(P, T) ∧ dnaT(T) ∧ not used(X)) ∧
(♦delneg healthy(P)⊗ not inconsistent)

Now we come back to our query, and check: ?- d0flu(Laura)⊗ r 1.
In this case we would detect an inconsistency produced by r 1. By observing

the construction of the well founded model, we can track back the conflict. �

Recall that beside detecting inconsistencies, T RPAD allow to execute inconsis-
tency free rules and obtain runs as in the original production system.

7 Conclusions

In this paper we proposed a new semantics for the combination of production sys-
tems with arbitrary DL ontologies. Unlike previous approaches [26,13,10,4,21,31],
the semantics presented here supports extensions, like the FOR-loops or while-
loops, that are not included in RIF-PRD, but are found in commercial produc-
tion systems such as IBM’s JRules [19]. In addition, our approach can handle
inconsistencies produced by the interaction of rule actions and the ontology.

We also defined a sound embedding of such semantics, restricted to rule-based
DL ontologies, into Transaction Logic with partial action definitions (T RPAD).
This reduction gives a declarative semantics to the combination, and is consid-
erably simpler and compact that other approaches, including [26,21,31,10,20].

To model production systems in T RPAD, we extended T RPAD with default
negation and defined the well-founded semantics [29] for it. It is worth noting

350 M. Rezk and M. Kifer

that this T RPAD embedding can be used as an implementation vehicle for the
combination of PS and rule-based ontologies.

Acknowledgments. We thank the anonymous reviewers for useful feedback.
M. Rezk and M. Kifer were partially supported by the European Commission
under the project OntoRule. M. Kifer was also partially supported by the NSF
grant 0964196.

References

1. Anicic, D., Fodor, P., Stühmer, R., Stojanovic, N.: An approach for data-driven
logic-based complex event processing. In: The 3rd ACM International Conference
on Distributed Event-Based Systems, DEBS (2009)

2. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The dl-lite family
and relations. Journal of Artificial Intelligence Research (JAIR) 36, 1–69 (2009)

3. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook. Cambridge University Press (2003)

4. Baral, C., Lobo, J.: Characterizing production systems using logic programming
and situation calculus (1995),
http://www.public.asu.edu/~cbaral/papers/char-prod-systems.ps

5. Bonner, A., Kifer, M.: Transaction logic programming. In: Proc. of International
Conference on Logic Programming (ICLP), Budapest, Hungary, pp. 257–282. MIT
Press (June 1993)

6. Bonner, A., Kifer, M.: Transaction logic programming (or a logic of declarative
and procedural knowledge). Technical Report CSRI-323, University of Toronto
(November 1995),
http://www.cs.sunysb.edu/~kifer/TechReports/transaction-logic.pdf

7. Bonner, A.J., Kifer, M.: A logic for programming database transactions. In:
Chomicki, J., Saake, G. (eds.) Logics for Databases and Information Systems, ch.
5, pp. 117–166. Kluwer Academic Publishers (March 1998)

8. Bonner, A.J., Kifer, M.: Applications of Transaction Logic to Knowledge Repre-
sentation. In: Gabbay, D.M., Ohlbach, H.J. (eds.) ICTL 1994. LNCS, vol. 827, pp.
67–81. Springer, Heidelberg (1994)

9. Calvanese, D., Kharlamov, E., Nutt, W., Zheleznyakov, D.: Evolution of DL − Lite
Knowledge Bases. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang,
L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496,
pp. 112–128. Springer, Heidelberg (2010)

10. Damásio, C.V., Alferes, J.J., Leite, J.: Declarative Semantics for the Rule Inter-
change Format Production Rule Dialect. In: Patel-Schneider, P.F., Pan, Y., Hitzler,
P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part
I. LNCS, vol. 6496, pp. 798–813. Springer, Heidelberg (2010)

11. Davulcu, H., Kifer, M., Ramakrishnan, C.R., Ramakrishnan, I.V.: Logic based
modeling and analysis of workflows. In: PODS, pp. 25–33 (1998)

12. Davulcu, H., Kifer, M., Ramakrishnan, I.V.: Ctr-s: a logic for specifying contracts
in semantic web services. In: WWW, pp. 144–153 (2004)

13. de Bruijn, J., Rezk, M.: A Logic Based Approach to the Static Analysis of Pro-
duction Systems. In: Polleres, A., Swift, T. (eds.) RR 2009. LNCS, vol. 5837, pp.
254–268. Springer, Heidelberg (2009)

http://www.public.asu.edu/~cbaral/papers/char-prod-systems.ps
http://www.cs.sunysb.edu/~kifer/TechReports/transaction-logic.pdf

Production Rules and Transaction Logic 351

14. de Sainte Marie, C., Hallmark, G., Paschke, A.: Rif production rule dialect (2010),
http://www.w3.org/TR/rif-prd/

15. Emerson, E.A.: Temporal and modal logic. In: Handbook of Theoretical Computer
Science, pp. 995–1072. Elsevier (1995)

16. Fodor, P., Kifer, M.: Transaction logic with defaults and argumentation theories.
In: ICLP (Technical Communications), pp. 162–174 (2011)

17. Heymans, S., Eiter, T., Xiao, G.: Tractable reasoning with dl-programs over
datalog-rewritable description logics. In: European Conference on Artificial In-
telligence, pp. 35–40 (2010)

18. Horrocks, I.: Ontologies and the semantic web. Commun. ACM 51, 58–67 (2008)
19. I. JRules, http://www.ibm.com/software/integration/

business-rule-management/jrules-family/

20. Kowalski, R., Sadri, F.: Integrating Logic Programming and Production Systems in
Abductive Logic Programming Agents. In: Polleres, A., Swift, T. (eds.) RR 2009.
LNCS, vol. 5837, pp. 1–23. Springer, Heidelberg (2009)

21. Lausen, G., Ludäscher, B., May, W.: On Active Deductive Databases: The Statelog
Approach. In: Kifer, M., Voronkov, A., Freitag, B., Decker, H. (eds.) Dagstuhl
Seminar 1997, DYNAMICS 1997, and ILPS-WS 1997. LNCS, vol. 1472, pp. 69–
106. Springer, Heidelberg (1998)

22. Pearce, D., Wagner, G.: Logic Programming with Strong Negation. In: Eriksson,
L.-H., Hallnäs, L., Schroeder-Heister, P. (eds.) ELP 1991. LNCS, vol. 596, pp.
311–326. Springer, Heidelberg (1992)

23. Raschid, L.: A semantics for a class of stratified production system programs. J.
Log. Program. 21(1), 31–57 (1994)

24. Rezk, M., Kifer, M.: Formalizing production systems with rule-based ontolgies
(2011), http://www.inf.unibz.it/~mrezk/techreportTRPS.pdf

25. Rezk, M., Kifer, M.: Reasoning with Actions in Transaction Logic. In: Rudolph, S.,
Gutierrez, C. (eds.) RR 2011. LNCS, vol. 6902, pp. 201–216. Springer, Heidelberg
(2011)

26. Rezk, M., Nutt, W.: Combining Production Systems and Ontologies. In: Rudolph,
S., Gutierrez, C. (eds.) RR 2011. LNCS, vol. 6902, pp. 287–293. Springer, Heidel-
berg (2011)

27. Roman, D., Kifer, M.: Reasoning about the behavior of semantic web services with
concurrent transaction logic. In: VLDB, pp. 627–638 (2007)

28. Roman, D., Kifer, M.: Semantic Web Service Choreography: Contracting and En-
actment. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin,
T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 550–566. Springer,
Heidelberg (2008)

29. Van Gelder, A., Ross, K., Schlipf, J.: The well-founded semantics for general logic
programs. Journal of the ACM 38(3), 620–650 (1991)

30. Winslett, M.: Updating logical databases. Cambridge University Press, New York
(1990)

31. Zaniolo, C.: A unified semantics for active and deductive databases. In: Workshop
on Rules In Database Systems (RIDS 1993), pp. 271–287. Springer, Heidelberg
(1993)

http://www.w3.org/TR/rif-prd/
http://www.ibm.com/software/integration/business-rule-management/jrules-family/
http://www.ibm.com/software/integration/business-rule-management/jrules-family/
http://www.inf.unibz.it/~mrezk/techreportTRPS.pdf

	Formalizing Production Systems
with Rule-Based Ontologies
	Introduction
	Related Work
	Preliminaries
	Production Systems Augmented with Ontologies
	Syntax
	Operational Semantics

	Extending TRPAD with Default Negation
	Declarative Semantics
	Conclusions
	References

