Reasoning about Actions in
Transaction Logic

Martin Rezk

FREIE UNIVERSITAT BOZEN

LIBERA UNIVERSITA DI BoLzANO

FREE UNIVERSITY OF BOZEN - BOLZANO

Fakultdt fiir | Facolta di Scienze Faculty of
Informatik e Tecnologie informatiche | Computer Science

For further information about FUB-CS publications, please contact

Facolta di Scienze e Tecnolo- Fakultat fiir Informatik Faculty of Computer Science
gie Informatiche

Libera Universita di Bolzano Freie Universitdt Bozen Free University of Bozen-Bolzano

Piazza Domenicani 3 3 Domenikanerplatz Piazza Domenicani 3
39100 Bolzano 39100 Bozen 39100 Bozen-Bolzano
Italia Italien Italy

tel: +39 0471 016 000
fax: +39 0471 016 009
e-mail: cs-secretariat@unibz.it
homepage: http://www.unibz.it/inf

Reasoning about Actions in
Transaction Logic

PHD THESIS IN COMPUTER SCIENCE

Martin Rezk

Dissertation advisors:

Prof. Michael Kifer
Department of Computer Science
Stony Brook University
New York, U.S.A.

Thesis Evaluated by:

Prof. José Alferes
Department of Computer Science
Faculdade de Cincias e Tecnologia

Universidade Nova de Lisboa

Lisbon, Portugal

Examination Committee:

Prof. Luigi Palopoli
Dipartimento di Elettronica,
Informatica e Sistemistica
Universita degli Studi della Calabria
Rende, Italy

Prof. Werner Nutt
KRDB Research Centre
Faculty of Computer Science
Free University of Bozen-Bolzano
Bozen-Bolzano, Italy

Dr. Marco Montali
KRDB Research Centre
Faculty of Computer Science
Free University of Bozen-Bolzano
Bozen-Bolzano, Italy

Prof. Sandro Morasca
Department of Sciences of Culture,
Politics and Information
Universita degli Studi dell’Insubria
Como, Italy

Prof. Francesco Ricci
Faculty of Computer Science
Free University of Bozen-Bolzano
Bozen-Bolzano, Italy

Date of public defense: 23/04/2012

vi

vii
Abstract

This thesis introduces TR™” (Transaction Logic with Partially Defined Ac-
tions)—an expressive formalism for reasoning about the effects of complex ac-
tions. TR™P is largely based on a subset of Transaction Logic, but extends it
with special premise-formulas that generalize the data and transition formulas
of the original Transaction Logic. We develop a sound and complete proof the-
ory for TR”P and illustrate the formalism on a number of non-trivial examples.
In addition, we show that most of TR™? is reducible to ordinary logic program-
ming and that, in a well-defined sense, this reduction is sound and complete.

We also augment TR"™? with default negation, and along the way we define
a well-founded semantics for TR which, to the best of our knowledge, has
never been done before. Finally, as an application, we use TR™” to give a
declarative semantics to the combination of production systems and ontologies.

The results obtained in this thesis significantly advance the state of the art
in the important subfield of Artificial Intelligence devoted to reasoning about
actions. We expect these results to find applications in intelligent agent systems,
semantic web services, question answering systems, and other areas.

Contents

|Acknowledgments|

(1 _Introductionl

B Prelminarics

2.1 First-Order Logic|
2.2 Logic Programs|
2.3 Transaction Logic|. oo o

|13 Transaction Logic With Partially Defined Actions|
[3.1 Partially Defined Actions and Incomplete Information|
[3.2 Representing Actions with 7R™"
[3.3 A Proof Theory for TR™"
3.4 Axioms of Inertia and Action Theory|.
[3.5 Reducing Serial-Horn 7'R ™ to Logic Programming|
[3.6 Reducing 7'R;"” to Logic Programming|
[3.7 TR™P with Default Negation|.
[3.8 Lifting The Interloping Restrictionl
[3.9 Summary of the Contributions|

[4 Modeling Action Languages with 7 R™7|

4.1 Action Language L1|o
4.2 Motivating Examples|. o 000,
4.3 Representing £ in TR™P|
4.4 Planning: £; vs TR™"
4.5 Relationship with Other Action Languages|
|4.6 Considering 7 R™” with default negation|
4.7 Summary of the Contributions|

ix

13
13
15
21

29

34
40
41
52
95
60
68
70

Contents

[> Modeling Production Systems| 95
5.1 Background on Description Logic| 98
b2 Related Worklo 101
5.3 Combining Production Systems and Ontologies| 102
[5.4 Production Systems in TR™"|. 109
[5.5 Summary of the Contributions| 113

6 __Conclusions| 115

ADPP C
|A Inference System /| 119
- - PAD 125

C Horn-TR_ to LPI 135

D_TR™” to LP| 141

[EE_Well-founded Semantics| 151

[F £, to TR™7 175

[G_PS to TR™" 185

|Bibliography| 203

[Publications] 211

Index] 213

Acknowledgments

Each of us has his cowardice.
Each of us is afraid to lose, afraid
to die. But hanging back is the
way to remain a coward for life.
The Way to find courage is to seek
it on the field of conflict.

Masutatsu Oyama

Someone said that there is not such thing as silent gratitude, and maybe
s/he was right. Then one needs to sit down and come up with a list of names,
and find a way to say thanks. But before one writes the first line one realizes
the two main issues in this task: (i) the huge number of people that one is in
debt to, and (7i) how hard it is to thank without sounding like if it was just a
protocolar duty. These two problems leads us to the following—general—claim:
Greetings are not scalable. The more people we thank, the more it looks that
they did not contribute so much to the final result. However, in my case, |
truly owe a lot to many people, and that is because to be fair I would need
to thank not only those who helped me in the last four years, but in the last
twenty-nine. The people I want to mention here taught me how to overcome my
own cowardice, tackle each battle, learn from my losses, and prevail.

My family gave me the very first tools, principles, curiosity, and support.
It is so simple, and yet irreplaceable. My friends, spread all around the world:
Argentina, USA, Europe, Asia; have always been a safe shelter on this journey,
giving me advice, listening, shaping different views, opening new doors. My
teachers and professors showed me how and where to seek for knowledge, and
they put an order in the huge mess of ideas that I had in my head, they taught me
how to learn. In particular, Emmanuel (Kyokushin Karate instructor) taught
me something that became decisive to reach this point: The Japanese word
“OSU”. It means “to persevere whilst pushing oneself to the absolute limit”.

2 Acknowledgments

He taught me that as long as we can stand up, we are not over, and that we
must stand up, always, independently of the pain, or the challenge. There were
very hard times during my PhD studies, many more than I expected. But I was
not alone. Enrico Franconi and Diego Calvanese were two of the persons who
cared, and asked, and sought for solutions, intensively. And it was Michael Kifer
who, in the worse moment, helped me to stand up, taught me how to continue,
backed me up. And as it was not enough, he went beyond science, and showed
me how to think out of the box, not to judge too soon, not to listen too late.

Last but not least I would like to thank all the people here in Bolzano and
USA who helped me to complete this journey: my local supervisor Werner Nutt,
the reviewers of my thesis Marco Montali and Jose Alferes, and the members
of the group, colleagues, and friends Mariano (The tool) Rodriguez, Vlad (it is
ok) Ryzhikov , Elena (She knows) Botoeva, Babak Bagheri, Yazmin (the cook)
Ibanez, Ola (Hola) Kerhet, Manuel (THE german) Kirschner, Inanc (Wing) Sey-
lan, Tim (yellow) Knapik, Paul Fodor, Eddie (sensei) Cumming, Laura Alonso,
Mario (Mochi) Assis, Alessandro Mosca, Maria Keet, Simon Razniewski, and
the rest of the KRDB members.

Chapter

Introduction

And the reason I am so nervous is
that everything I do now is
leading me to one of three possible
futures... Which one will it be?
Time alone will tell. But still I
know that writing this diary can
perhaps provide the answer; it
may even help produce the right
future.

Adolfo Bioy Casares,
The Invention of Morel

Artificial Intelligence (Al) is the area of computer science that studies the
problem of how to make intelligent machines, especially intelligent computer
programs. One of the key issues in this field is how to represent knowledge about
a given domain, and how machines and systems (such as autonomous agents)
can use this representation to make decisions, and infer new information. In this
thesis we deal with one of the hardest aspects of the knowledge representation
problem: reasoning about the agents’ actions. To perform this task we need to
reason about change in dynamic domains. Thus, we must be able to specify [65]:

Base scenario: object identities, static properties, space.
Time: time-varying properties, time itself.
Actions: preconditions of elementary actions, effects of elementary actions,

nondeterministic actions, indirect effects of actions, and the cumulative
effects of complex actions.

4 Chapter 1. Introduction

A complex action is an action composed out of simpler constituent actions,
sometimes in rather complex ways. Let us present the following example to
clarify the concepts introduced above :

1.0.1. ExaMPLE. [Block World] Suppose we need to model a robotic arm that
can move a block from the top of one block, to the top of another if the tops
of both blocks are clear and have the same color. The robotic arm can also be
idle. If the top of any of the blocks is not free, then the robotic arm recursively
clears the top of the blocks before moving them. The constituent actions of the
complex action move are to lift and drop the blocks.

Once this information has been specified, we could consider a concrete setting
with two violet blocks, blk; and blks over a table and check if blks can be stacked
on the top of blk; (c.f. Figure|1.1). O

—
B w

Move(blk2, blk1)

iEi

Figure 1.1: Block World

Now, let us point out several key issues that must be specified to check if
blko can be stacked on the top of blk;.:

object identity: We must represent the fact that blky, blks, and the table are
not the same object.

static properties: We must represent the color of the blocks.

space: We must be able to deal with locations. We must represent the knowl-
edge that if blk, and blko are in the table, then blks is not on the top of
blk;.

time-varying properties: We should represent properties that change with
time, like clearness of block tops.

time: We must represent the initial state where both blocks are in the table,
and the successor states resulting from the actions taken by the robotic
arm.

preconditions: We need to represent the restriction that the robotic arm can
only lift a block if its top is free, and it can stack a block only if the blocks
being stacked have the same color.

effects of elementary actions: We need to model that when the robotic arm
lifts a block, such block is not on the table anymore.

nondeterministic actions: We should be able to express that the robotic arm
can either move a block, or wait.

indirect effects: We must express that if a block breaks, it cannot be lifted
anymore.

cumulative effects of complex actions: We should represent the sequence
of action effects that define the complex action move.

Finally, to check if we can stack blk2 over blk1 we need to be able to reason over
the initial state using our knowledge about the world and the effects of actions.

The standard and most promising tool for representing knowledge and rea-
soning is logic. Initially, it was first order logic and the situation calculus [61]
was one of the first methodologies for reasoning about actions in that framework.
However, many researchers felt that the situation calculus was a cumbersome
and only partial solution to the problem. In particular, situation calculus did
not offer an elegant way to work with default reasoning [65]. Default reason-
ing allows to infer properties of the world without a complete description of
it. Some features of the world are by default assumed to be true or false. For
instance, in our example if we do not have information about a block blk3, we
assume that such block does not exist. That is, we jump to conclusions given
the lack of information. If new information becomes available that invalidates
those conclusions, then we must also retract those conclusions. Non-monotonic
logics offered a simple and yet effective way to perform such kind of reason-
ing. Thus, a number of advanced logical theories for reasoning about actions
and change based on non-monotonic formalisms were developed over the years.
Some of the best known theories are: Fluent Calculus and Flux [76] 62], Event
Calculus [51], A[35], £1[8], C[36], ALM[46]. However, existing approaches have
limitations such as the inability to define complex actions [35, [8, 36], performs
complex hypothetical tests [56l [76] [62], B35, 8], post-conditions for actions, and
recursive actions [35, [8, 36} [51] (further details can be found in Chapter [4). One
of the non-obvious consequences of relying on a logic is the need for azioms
of inertia (a.k.a. frame axioms). The issue here is that properties of an object

6 Chapter 1. Introduction

do not normally change without a cause (e.g. the color of a block remains the
same after the block is moved), and this is not a “built-in” amenity in most
logics. This problem has been called the frame problem [61]. Axioms of inertia
are logical statements intended to solve this problem. Different logics solve the
frame problem using different set of axioms, and this is a never-ending debate
about the merits of the different solutions [14].

In this thesis we tackle the problem of developing an expressive declara-
tive language that allows sophisticated and yet simple ways of describing and
reasoning about actions and change, allowing:

e complex actions,

e recursion,

post-conditions for actions,

complex hypothetical tests,

rich domain domain descriptions, etc.

As applications of our formalism, we show how it benefits the planning prob-
lem (c.f. Chapter and also describe its use as a logic language that gives
a declarative semantics to production systems and rule-based ontologies (c.f.
Chapter . However, these two contributions, regarding planning and produc-
tion systems, are to illustrate the power of our language and it is not the main
focus of this thesis.

The language proposed in this thesis is based on Transaction logic (TR).
Transaction logic [1} [IT], 12] is a promising logic language that overcomes many
of the limitations of the existing approaches. It was intended as a formalism
for declarative specification of complex state-changing transactions in logic pro-
gramming; and it has been used for planning [11], knowledge representation [13],
active databases [L1], event processing [3], workflow management and Semantic
Web services [23], 24], [73], 27], and as a declarative alternative to non-logical fea-
tures in Prolog, like the assert and retract operators [12]. In particular, in the
database area, TR serves as a declarative language for programming transac-
tions, for defining active rules, and for updating database views. In addition, it
is worth mentioning that 7R has several implementations [43],[44) [75] [33], 82, 50].

The contributions provided in this thesis significantly advance the state of
the art in the important subfield of Artificial Intelligence dedicated to reasoning
about actions. We expect these results to find applications in intelligent agent
systems, semantic Web services, question answering systems, and other areas.

Modeling Actions in Transaction Logic

The idea behind TR is that by defining a new logical connective for sequencing
of actions and by giving it a model-theoretic semantics over sequences of states,
one gets a purely logical formalism that combines declarative and procedural
knowledge.

1.0.2. EXAMPLE. As a motivating example, consider the US health insurance
regulations. The complexity of these laws makes it difficult to determine whether
a particular action, like information disclosure, or contacting a patient, is com-
pliant. To help along with this problem, [54] formalized a fragment of these
regulations in Prolog, but could not formalize temporal, state-changing regula-
tions. For instance, [54] had statements to express the fact that, to be compliant
with the law, a DNA test requires a doctor’s prescription and a patient’s con-
sent, but it was awkward to declaratively express the order in which these two
independent actions are to be performed. The sequencing operator of TR en-
ables these kinds of statements naturally. However, it has limitations to reason
about the effects of these actions. 0

Although TR was created to program state-changing transaction, [10] demon-
strated that TR can do basic, yet interesting reasoning about actions. However,
[10] was unable to develop a complete proof theory, and the fragment of TR
studied there was not expressive enough for modeling many problems in the
context of action languages, for instance the Turkey Hunting problem [40]. A
number of sophisticated logical theories to reason about actions have been de-
veloped over the years, including A[35], £1[8], C[36], ALM[46]. Unfortunately,
most of such languages have their weak points along with the strong ones, and
none of them is sufficient as a logical foundation for agents.

In this thesis we develop a full-fledged theory—depicted in Figure
Transaction Logic with Partially Defined Actions (TR"™P), for programming
and reasoning about actions over states. This theory extends TR with premise-
formulas, which generalize 7TR’s data and transition oracles, making the for-
malism more suitable for specifying partial knowledge about actions. The data
oracles in TR specifies a set of primitive database queries , i.e., the static se-
mantics of states; and the transition oracle specifies a set of primitive database
updates, i.e., the dynamic semantics of states.

In our example, we use TR™P premises to express information about the
states. For instance, to express that in a state D5 the patient consents to a
DNA test or that executing the action do_dna in state Dy leads to state Ds.

It is worth noticing that 7R™P” subsumes Horn-7R [1 11, 12], a well-
studied and expressive fragment of Transaction Logic. The theory developed
here, TR"?, has a great deal of sophistication in action composition, enabling

8 Chapter 1. Introduction

hypothetical, recursive, and non-deterministic actions. This allows to reason
about actions in highly complex scenarios, and not only about the effects of
future actions, but also about the causes and preconditions holding in the past.
For instance, coming back to our example, in TR"” we can program an action
“do_dna” that performs a DNA test if the patient gives an ok, but (assuming that
the hospital was in compliance) if the test was administered we can also infer
that the patient must have given her prior consent.

To carry out this kind of reasoning, we provide a sound and complete proof
system for this new formalism. We also show that, when we restrict the shape
of partial actions, such reasoning can be done by a reduction to ordinary logic
programming. This last contribution provides an easy way to implement and
experiment with the formalism, although a better implementation should be
using the proof theory directly, similarly to the implementation of the serial-
Horn subset of TR in FLORA-2 [50].

Finally, to boost the non-monotonic capabilities of T , we extend T
with default negation (a.k.a. negation as failure). Default negation allows a logic
system to conclude the negation of any atom that the system unsuccessfully
finishes exploring all possible proofs.

Our main focus in this thesis is the development of the formalism itself and
illustration of its capabilities.

Statements describing
states and transactions

PAD PAD

Premises,
Rules defining
actions and fluents

TR
+

Premises

i

Figure 1.2: TR™P

PAD

Applying T

As an application, Chapter [5| develops a semantics for production systems aug-
mented with DL Ontologies, and embed it in TR"?.

Production systems (PSs) are one of the oldest knowledge representation
paradigms in artificial intelligence, and are still widely used today. They are
applied to examine the health of data centers and networks [74], to enforce
constraints over databases [15], to test product’s quality [20], accounting [49],
to model human behavior [84], etc.

Such systems consist of a set of production rules that rely on forward chaining
reasoning to update the underlying database, called working memory. Tradi-
tionally, PSs have had only operational semantics, where satisfaction of rule
conditions is checked using pattern matching, and rule actions produce asser-
tions and deletions of facts from the working memory. PSs syntax and semantics
have been standardized as W3C’s Production Rule Dialect of the Rule Inter-
change Format (RIF-PRD) [80]. The RIF-PRD specification has a number of
limitations, however. First, it omits certain important primitives that are found
in many commercial production systems such as IBM’s JRules [49]. The FOR-
loop and the while-loop constructs are examples of such an omission. Second,
RIF-PRD still does not integrate with ontologies [0, [42]. Here, by ontology we
mean a formal representation of a domain of interest, expressed in terms of con-
cepts and roles, which denote classes of objects and binary relations between
classes of objects, respectively.

The integration of two knowledge representation languages with such differ-
ent semantics raises many questions. In particular, while a working memory can
be seen as a single interpretation structure (closed world semantics), an ontol-
ogy represents a possibly infinite set of interpretations (open world semantics),
namely the models of the ontology. Thus, it is necessary to define how to apply
rules to this set of models, and how we check for satisfaction/entailment of rule
conditions. On top of that, the rule applications can produce inconsistencies
between the working memory and the ontology that need to be solved.

To answer these questions we need to define a precise semantics (both model-
theoretic and computational) to the combination of rules, ontologies, and pro-
duction systems.

We provide both, (i) a new semantics for production systems augmented
with DL ontologies that includes looping-rules, and can handle inconsistency;
(7i) a sound embedding of the combination of PSs and rule-based ontologies into
TRMP, which provides a model-theoretic semantics to the combination.

Our formalization is significantly more general than RIF-PRD or other ex-
isting formalizations of production rules in that it supports wider ontology inte-
gration and covers important extensions that exist in commercial systems such
as the aforesaid FOR-loop.

10

Chapter 1. Introduction

Summary of the Contributions

Our contribution in this thesis are as follows:

1.

. defining a subset of the formalism, called T

. extension of T

extension of TR with premise-formulas to express information about the
states, making the formalism more suitable for specifying partial knowl-
edge about actions;

PAD - and demonstrating its

expressive power for high-level descriptions of the behavior of complex
actions;

development of a sound and complete proof theory for TR™P?;

sound and complete reduction of the serial-Horn fragment of 7R and the
deterministic subset of TR™?” to regular logic programming;

PAD with default negation, and definition of a well-founded

semantics [79] for TR™P,

relationship of the modeling and reasoning capabilities of TR™P and the
action language L1, and a brief discussion about the relation between
TR"P and the action languages Situation Calculus, Event Calculus, Flu-
ent Calculus, C and ALM;

new operational semantics for production systems augmented with DL
ontologies;

sound embedding of such combination (restricted to rule-based ontologies)
into TR™P | giving in this way a model-theoretic semantics to the combi-
nation.

Structure of the Thesis

This thesis is organized as follows.

Chapter [2| presents the necessary background needed for this thesis. That is,

Transaction Logic needed to define 7TR™”, First-Order Logic, and Logic
Programming needed in Chapter

Chapter [3| defines an appropriate subset of TR, TR™P, develops a sound

and complete proof theory for it, and provides numerous examples of the
use of TR™P and its proof theory for complex reasoning tasks about
actions. It also proves that the frame axioms proposed in that chapter
behave as expected. That is, they correctly model the inertia laws. In

11

addition, it introduces a reduction from a fragment of TR’ to Horn
logic programs and presents soundness and completeness results for this
reduction. Finally, it extends TR™?” with default negation and shows the
relation between the frame axioms with and without default negation.

Chapter [4] identifies and compares the modeling and reasoning capabilities
of TR™P and the action language L1, reduces £y to TR™P, discusses
planning problems in both formalisms, and compares TR™?” with other
popular action languages: Situation Calculus, Event Calculus, ALM, C,
etc.

Chapter [5| presents the necessary background on production systems and De-
scription Logic needed for this Chapter. It explores the space of design
options for combining the traditional closed world semantics of PSs with
the open world semantics of DL and propose a new operational semantics
for such combination. Finally, it formalizes in TR™?” the semantics for
Production systems combined with rule-based ontologies.

Chapter [6] concludes the thesis.

All proofs are given in the appendices.

Chapter

Preliminaries

My undertaking is not difficult,
essentially. I should only have to
be immortal to carry it out.

Jorge Luis Borges,
Pierre Menard, Author of The
Quixote

2.1 First-Order Logic

The alphabet of a first-order language £ includes a countably infinite disjoint
sets of variables V, constant symbols C, and predicate symbols P. A term is
a constant or a variable. Each predicate symbols has an arity n, which is a
non-negative integer. In this thesis we will use First-Order logic (FOL) (and
Description Logic) in Chapter where we combine productions systems and
ontologies—as an ontology language. Thus, we will not include function symbols
here since neither description logics nor production systems use themE]

Our language, £, includes all the usual first-order operators V, A, —,V, 3, —,
= plus the symbol neg, which represents the explicit negation (also sometimes
called strong negation) [66]. The neg symbol applies only to atoms. In the
actual use in this thesis, = will appear only in ontologies, while neg will be
used both in ontologies and in Transaction Logic. In a certain sense, which will
be made clear later, neg f will imply —f, but not vice versa.

! Many production systems do use built-in and external functions and so do some DLs.
However, this does not bring any new or interesting issues in our context, so we disregard
functions (in FOL) in order to simplify the exposition.

13

14 Chapter 2. Preliminaries

Formulas are defined recursively as usual in first-order logic. A literal is
either an atomic formula f, or a formula of the form neg f where f is an atomic
formula. Atoms are also called positive literals. A negative literal is an
atom preceded with the symbol neg (e.g., negp(X)).

Since in Chapter [5]we will be integrating ontologies with production systems,
we will need to use Herbrand domains and the unique name assumption. There-
fore, we will use the Herbrand semantics from the outset. As is well-known, this
semantics is equivalent to the general one for universal clausal form [59]. The
semantics defines semantic structures. The domain of a Herbrand semantic
structure is called the Herbrand universe I/; in our restricted case it is just the
set of all constants C in the language £. The Herbrand base B is a set of all
ground literals in the language. Note that the Herbrand universe and Herbrand
base are infinite, fixed, and depend only on the language L.

2.1.1. DEFINITION. [Semantic Structure] A semantic structure M is a triple
(A,B,0), where

e A is the Herbrand universe.
e B is a subset of the Herbrand Base B.

e o is a variable assignment, i.e., a mapping V — A. O

We now define satisfaction of formulas by semantic structures. If ¢ is a
formula of £, M is a structure for £, then satisfaction of ¢ in M is denoted
M = ¢. Given a structure M, and a term (i.e., constant or variable) t, we
define tM as: tM = o(t) if t is a variable and +™ = t if ¢ is a constant. Note
that this implies the unique name assumption (UNA). That is, if ¢1,co € C are
two distinct constants then e # 1.

The relation = is defined recursively as follows:

If t; and t9 are terms, then M = t; = t9 if and only if t{\/‘ = té”.

If P is an n-place predicate letter in £ and t1,...,t, are terms, then
M |= P(ty...t,) if and only if P(t...t)") € B.

If P is an n-place predicate letter in P and ti,...,t, are terms, then
M = neg P(t ...t,) if and only if neg P(t;1...tM) € B.

M = —¢ if and only if it is not the case that M = ¢.

M E (¢ A) if and only if M = ¢ and M | 4.

M E (¢ V) if and only if M = ¢ or M = .

2.2. Logic Programs 15

e M EVu:¢if and only if M’ |= ¢ for every structure M’ that agrees with
M except possibly on the variable v.

e M [Ju: ¢if and only if M’ = ¢ for some structure M’ that agrees with
M except possibly on the variable v.

A formula ¢ is valid, if M |= ¢, for every structure M.

A formula ¢ is satisfiable if there is a structure M such that M |= ¢.

If T is a set of sentences and if M = ¢ for each sentence ¢ in I', then we say
that M is a model of I'. So a set of sentences is satisfiable if it has a model.

We say that T' entails ¢, written I' = ¢, if and only if T' U {—¢} is not
satisfiable.

2.2 Logic Programs

In this section we briefly remind the basic notions from standard logic program-
ming [60], which will be needed in this thesis.

Syntax.
The language £ in traditional logic programming consists of:
e A countably infinite set of variables V.

e A countably infinite set of function symbols F, where constants are treated
as 0-arity function symbols.

e A countably infinite set of predicates P.
e The symbols {V, 3, A, —, neg , not }

Terms are defined as usual in first order logic. We denote the set of all atoms
in the language as A. Atoms will be also called positive literals.

The symbol neg will be used to represent the strong negation [66]. The
symbol not will be used for default negation.

A literal is either an atom or it has one of the following negated forms:

neg f, not f, notneg f

where f is an atom. Literals that do not mention not are said to be not -free.
Otherwise we say they are not -literals.
A logic program is a collection of statements (called rules) of the form

VX: (o<l AN ANl Anotilpyi1 A... Anotl,) (2.1)

16 Chapter 2. Preliminaries

where each [; is a literal and [y is not -free. The literal [y is called the head of
the rule r. The set of literals {l1,...,[,} is called the body of r. If the body
is empty, then < can be dropped, and the it is a fact. By a clause we mean
either a rule or a fact.

Given a rule r of the form (2.1]), the sets {lo}, {l1...ln}, and {lpmy1...0n}
are referred to as head(r), pos(r) and neg(r) respectively. The set lit(t) stands
for head(r) U pos(r) Uneg(r).

Following a standard convention, will be simply written as:

lo<l1,...,lm,n0t ly11,...,n0tl,) (2.2)

An expression is called ground if it does not contain any variable.

Queries are statements of the form 3X : Iy A...Al,,, where [y, ..., ,, are liter-
als and X are all the variables mentioned in [y, ...,1,,. The existential quantifier
is usually omitted and comma is used often in lieu of the conjunction symbol A.

A Horn logic program is a logic program that do not contain not -literals.
Analogously, a Horn query is a query that do not contain not -literals.

Semantics.

This Section reviews the main concepts of the well-founded semantics for logic
programs. We will follow the approach in [68]. However we will modify the
presentation to ease the understanding of the well-founded semantics for 7R™?.

First let us introduce some notation. Let P be a logic program. The domain
of P is the Herbrand universe U of £. The Herbrand base of P, denoted Bp]
is the set of all instantiations of atoms in P using the terms from U.

This semantics uses three truth values, u, t and f, which stand for true,
false, and undefined and are ordered as follows: f < u < t. In addition, we will
use the following operator ~: ~t =f ~f=t, ~u=u.

2.2.1. DEFINITION. [Partial Herbrand interpretation] A Partial Herbrand
interpretation is mapping from B +— {f,u,t} that assigns a truth value, f, u,
or t, to every formula ¢ in B. O

2.2.2. DEFINITION. [Satisfaction] Let I be a partial Herbrand interpretation,
f a ground not -free literal, and [; ...[, literals. We define truth valuations
with respect to the path structure I as follows:

e I(f) was already defined as part of the definition of partial Herbrand
interpretation.

o I(y A ly) = min(I(l1),1(l))

2We will omit the subindex when it is clear from the context.

2.2. Logic Programs 17

e I(not¢) =~ 1(9)
e I(f+ULNn---ANlp)=t iff I(f)>T(lLA---Alp)

We write I = ¢ and say that ¢ is satisfied in the structure Iif I(¢) =t. O

2.2.3. DEFINITION. [Model of P] A partial interpretation I is a model of a
program P if and only if for all ground instances of the form (2.2)) in P

I(l) > min{I(ly),. .., 1(ix)}

g

There are two natural orderings between interpretations, one of them, <€ is
called the truth ordering. The other one, <€ is called the information ordering
and coincides with set-theoretic inclusion.

Given two partial Herbrand interpretations N1 and No, we say that

e N; <¢ Ny iff all not -free literals that are true in N7 are true in N9 and
all not -literals that are true in N7 are true in No.

e N; <¢ Ny iff all not -free literals that are true in N7 are true in Ny and
all not -literals that are true in Ny are true in Njy.

2.2.4. DEFINITION. [Least Model] A model M of a program P is minimal with
respect to <¢ iff for any other model, N, of P, if N <¢ M then N = M. The
least model of P, denoted LPM(P), is a minimal model that is unique. O

The following definition is key to the notion of well-founded models.

2.2.5. DEFINITION. [Quotient Operator] Let P be a logic program, and I be any
partial interpretation. By the quotient of P modulo I we mean a new program,
% which is obtained from P by replacing in every clause of P all negative
premises not [which are true (respectively undefined; respectively false) in I by
their corresponding truth value t (respectively, u, f). O

2.2.6. PROPOSITION. [69] Let P be a logic program, and I be any partial in-
terpretation. Then % is not -free and therefore it has a unique least partial
model.

The least partial model of a program can be obtained as the least fixed
point of the immediate consequence operator T', defined below. The following
definition assumes that the program has already been grounded.

18 Chapter 2. Preliminaries

2.2.7. DEFINITION. [Consequence Operator][69] Let P be a logic program and
let I be an interpretation. We define T'(I) as follows:

T() = LPM(?)

The ordinal powers of the consequence operator 1" are then defined inductively
as follows:

o T10(Iy) =1y
o TT(Iy) = (T 1(Iy)), if n is a successor ordinal
o TT9(Iy) = Uj<w T (1), if w is a limit ordinal O
2.2.8. PROPOSITION. The sequence of interpretations T described in Defini-
tionm is monotonic and thus has a fized point T with the property that
Tt pintl

Next we give the constructive definition of the well-founded models of logic
programs as iterated fixed points of the consequence operator T

2.2.9. DEFINITION. [Well-founded | The well-founded model of a logic pro-
gram P, written WEM(P), is defined as the limit of the sequence of interpreta-
tions 7" described in Definition m O

2.2.10. THEOREM. [69] WM (P) is the least model of P.

Let P be a program and ¢ a query. For simplicity we assume that ¢
is a ground formula. We say that the program P’s answer to ¢ is yes if
WFM(P)(q) =t, no it WEM(P)(not q) = f, and unknown otherwise.

Stable model semantics for Logic Programs

In this section, we review the main concepts of stable model semantics [34]
needed in Chapter [4] For the sake of simplicity, we assume that logic rules are
written as

lo%ll,...,ln,notln+1,...,notlk, (23)

where [; ...l are not -free.

2.2.11. DEFINITION. [Herbrand interpretation] A Herbrand interpretation,
M, is consistent a subset of the Herbrand base. O

2.2. Logic Programs 19

Observe that under stable model semantics, interpretations are 2-valued.
Satisfaction of a formula ¢ by Herbrand interpretation, M, denoted M |= ¢, is
defined as follows:

e M =1, where [is a (not -free) literal, iff | € M.

o M E ¢1 A ¢o, iff M = ¢y and M = ¢o.
e M [=not ¢, iff it is not the case that M = ¢.

e M |= r, where r is a ground rule of the form (2.3)), iff i € M whenever
MELAN...l,and M Enot (I,41 A...l).

Given a not-free program P, we write M = P if M = r for every rule
r € P. In this case we say that M is a stable model (a.k.a. answer set) of P.
It is known that every not-free program P has a unique least model [4]—a
model My such that for any other model N of P, [€ Mg implies [€ N for any
l € Bp.

To extend the definition of stable model (answer set) to arbitrary programs,
take any program P, and let Z be a Herbrand interpretation in £. The reduct,
P(S), of P relative to S is obtained from P by first dropping every rule of the
form such that {l,,41,...,lx} NZ = (; and then dropping the {l,41,...,lk}
literals from the bodies of all remaining rules. Thus P(Z) is a program without
default negation.

2.2.12. DEFINITION. [Stable Model] A Herbrand interpretation M is an stable
model for P if M is an answer set for P(Z). O

Observe that no every program has stable models, for instance
p <+ notp
has no stable models.

2.2.13. DEFINITION. [Entailment] A program P entails a ground literal [, writ-
ten P |= [, if [is satised by every stable model of P. O

Let P be a program and ¢ is a query. For simplicity we assume that ¢ is a
not -free literal. We say that the program P’s answer to ¢ is yes if P |= ¢, no if
P = not ¢, and unknown otherwise.

Splitting Sets: In the following, we will work with stratified programs. Intu-
itively, a program P is stratified if it can be partitioned into (disjoint) strata
Py ...P, such that: (i) P =P U---UP,, (i) Py is not-free, and (%ii) all the
negative literals in P; (0 < ¢ < n) are only allowed to refer to predicates that

20 Chapter 2. Preliminaries

are already defined in P;_;. Intuitively, in a stratified program P, the intended
model is obtained via a sequence of bottom-up derivation steps. In the first
step, P is split into stratums. The first stratum is a bottom part that does not
contain negation as failure. Since this subprogram is positive, it has a unique
stable model. Having substituted the values of the bottom predicates in the
bodies of the remaining rules, P is reduced to a program with fewer strata. By
applying the splitting step several times, and computing every time the unique
stable model of a positive bottom, we will arrive at the intended model of P.
Further details can be found in [67].

2.2.14. DEFINITION. [Splitting Set [57]] A splitting set for a program P is
any set U of literals such that for every rule r € P, if head(r) N U # 0 then
lit(r) C U. If U is a splitting set for P, we also say that U splits P. The set
of rules r € P such that lit(r) C U is called the bottom of P relative to the
splitting set U and denoted by by (P). The subprogram P \ by (P) is called the
top of P relative to U. O

2.2.15. DEFINITION. [Partial Evaluation] The partial evaluation of a pro-
gram P with splitting set U with respect to a set of literals X, is the program
ey (P, X) defined as follows. For each rule r € P such that

(pos(r)NU) C X and (neg(r)NU)NX =10

put in ey (P, X) all the rules ' that satisfy the following property

head(r') = head(r)
pos(r’)y = pos(r)\U
neg(r') = meg(r)\U

O

2.2.16. DEFINITION. [Solution] Let U be a splitting set for a program P. A
solution to P with respect to U is a pair (X,Y) of literals such that

e X is an stable model for by (P)
e Y is an stable model for ey (P \ by (P), X)

e X UY is consistent. O

2.2.17. ExaMPLE. [§] Consider the following program P :

a < b,notc
b+ c,nota
c <

2.8. Transaction Logic 21

The set U = {c} splits P; the last rule of P belongs to the bottom and the first
two rules from the top. Clearly, the unique stable model for the bottom of P
is {c}. The partial evaluation of the top part of P consists in dropping its first
rule, because the negated subgoal ¢ makes it useless, and in dropping the trivial
positive subgoal ¢ in the second rule. The result of simplification is the program
consisting of one rule

b < nota (2.4)

The only stable model for P can be obtained by adding the only stable model
for ([2.4]), which is {b}, to the stable model for the bottom used in the evaluation
process, {c}. O

2.2.18. PROPOSITION. [57] Let U be a splitting set for a program P. A set S
of literals is a consistent stable model for P if and only if S = X UY for some
solution (X,Y') of P with respect to U.

2.3 Transaction Logic

This section briefly reviews the syntax and model theory of a subset of Trans-
action Logic, which we call TR, that is necessary for understanding the results
of this thesis. One restriction on 7R~ are that it uses only the explicit nega-
tion neg (sometimes called strong negation [66]). This negation is a weaker
form of classical negation, and it applies only to fluents, not actions. Another
restriction is that 7R~ uses only one particular type of database states and
update operators, known as the “relational oracle”. In Sections and [3.6]
these restrictions will enable us to reduce various subsets of interest of TR~ to
ordinary logic programming.

Syntax.

The alphabet of a language, L7, of TR~ consists of:
e A countably infinite set of variables V.

e A countably infinite set of function symbols F, where constants are treated
as 0-arity function symbols.

e A countably infinite set of predicates P. This set is further partitioned
into two countably infinite subsets, Pyents and Pactions. The former will
be used to represent facts in database states and the latter transactions
that change those states. Querying a fluent can be viewed as an action
that does not change the underlying database state.

22 Chapter 2. Preliminaries

e Logical connectives A, V, the implication connectives <— and —, sequential
conjunction ®, and hypothetical operator ¢.

e The explicit negation connective neg .
e Quantifiers V and 4.

Terms are defined as usual in first-order logic. Formulas in Transaction Logic
are called transaction formulas; they extend the syntax of first-order logic as
defined next.

A transaction formula is defined recursively as follows.

e An atomic formula is an expression of the form p(¢;...t,) where p € P
is a predicate symbol, and t1,...,t, are terms. Atoms are also called pos-
itive literals. A negative literal is an atom preceded with the symbol
neg. A literal whose predicate symbol is in Prjyents Will be referred to
as a fluent literal. If the predicate symbol is in Pgetion, the literal will
be called transactional (or action) literal. Action literals are always
positive and cannot be preceded with neg (but fluent literals can).

e If ¢ and v are transaction formulas then so are the following expressions:

— “Classical” conjunction and disjunction: ¢ A, ¢V i
Left and right implication: ¢ < ¥, ¥ — ¢

— Serial conjunction: ¢ ® 1

Hypothetical execution: ¢
Quantification: YX ¢, X, where X is a variable.

e A transaction is a statement of the form ?-3X ¢, where ¢ =[; @ - -- @1},
is a serial conjunction of literals (both fluent and action literals) and X is
the list of all the variables that occur in ¢.

Transactions in 7R~ are analogous to (and generalize) the notion of
queries in ordinary logic programming.

e A transaction base is a set of transaction formulas.

Informally, a serial conjunction of the form ¢ ® 1 is an action composed of
an execution of ¢ followed by an execution of ¢). When ¢ and v are conjunctions
of fluents, the serial and classical conjunctions behave identically, i.e.,

A Afr=fle..of

2.8. Transaction Logic 23

We will also be often using the usual De Morgan’s laws, such as negneg f = f
and neg (f A g) = neg f V negg. This allows us to apply neg to complex
formulas and not just the atomic ones. For example,

neg (f1 A f2) = neg f1 V neg f>
neg (f1V f2) = neg f1 A neg fa
neg (neg f1 Vneg f2) = fi A fa

A hypothetical formula, Q¢, represents an action where ¢ is tested hypo-
thetically whether it can be executed at the current state. However, no actual
changes to the current state takes place. Implications, that can be written
¢ < ¥ and ¥ — ¢, can be understood as statements that ¢ is a call to a
complex action (a.k.a. compound actions or complex transaction) and ¢ is the
definition of (the actual course of action for) that transaction. In Section
we will see another use of the implication — for partial action definitions. We
assume that the set of all fluent predicates is partitioned into base fluents and
derived fluents. Base fluents can appear only as facts, while derived fluents
can appear in the heads of fluent rules, but they cannot appear as facts. In ad-
dition to the user defined predicate symbols, in 7R~ there are built-in actions
called elementary transitions for basic manipulation of states. These include
delete(f) and insert(f) for every ground base fluent literal f. Intuitively, delete
and insert deletes and inserts facts respectively.

The following examples illustrates the above concepts. We will follow the
usual logic programming convention whereby lowercase symbols represent con-
stants, function, and predicate symbols, and the uppercase symbols represent
variables that are universally quantified outside of the rules. Universal quanti-
fiers are omitted, as usual.

2.3.1. ExamPLE. [Block World, continued] Consider Example with the
following additional feature: a block can be moved only if it is light. In the
rules, below, move, free, put on_table, delete, and insert represent actions and on, clear,

24 Chapter 2. Preliminaries

light, color, not_broken, and weight are fluents.

(7) move(X,Y) — on(X,Z)® clear(X) ® not_broken(X) ®
clear(Y") ® not_broken(Y") ® light(X) ® color(X, W) ®
color(Y, W) ® delete(on(X, Z)) ® insert(on(X,Y"))
®delete(clear(Y))

(73) move(X,Y) — on(Z,X)® free(Z, X) @ move(X,Y)
(zit) move(X,Y) — on(Z,Y)® free(Z,Y) @ move(X,Y)
(iv) free(X,Y) +— clear(X) ® clear(Y') ® not_broken(X) ®

put_on_table(X') & delete(on(X,Y")) ® insert(clear(Y"))

(v) free(X,Y) — on(W, X)® free(W, X) ® free(X,Y)
(vi) light(X) — weight(X, W) ® limit(L) @ W < L
(vii) put-on_table(X) < insert(on(X,table))
(viid) 7- move(blk1, blk2) @ move(SomeBlk,blk1)

Rules (i), (i7) and (7i7) define the complex action for moving a block from
the top of one block, to the top of another.

This action is defined in terms of the built-in elementary updates insert and
delete and the complex action free that recursively clear the tops of the blocks.
The action free is defined in the rules (iv) and (v). Rule (vi) defines the fluent light,
which is used in the definition of move. That rule consists exclusively of fluents
and thus is a regular logic programming rule. Since all the literals involved in
the definition of light are fluents, they cause no state transitions and the use of
serial conjunction ® in that rule is equivalent to the use of classical conjunction
A. Thus, rule (vi) could also be written as

light(X) < weight(X, W) A limit(L) A\W < L

Rule (vii) defines the action put on_table. The last statement in the example is
an update transaction, which moves block blk1 from its current position to the
top of blk2 and then finds some other block and moves it on top of blk1l. For
instance, if the current database state is

D, = {clear(blkl), clear(blk2), clear(blk3), on(