
Reasoning about Actions in
Transaction Logic

Mart́ın Rezk

For further information about FUB-CS publications, please contact

Facoltà di Scienze e Tecnolo-
gie Informatiche

Fakultät für Informatik Faculty of Computer Science

Libera Università di Bolzano Freie Universität Bozen Free University of Bozen-Bolzano
Piazza Domenicani 3 3 Domenikanerplatz Piazza Domenicani 3
39100 Bolzano 39100 Bozen 39100 Bozen-Bolzano
Italia Italien Italy

tel: +39 0471 016 000
fax: +39 0471 016 009

e-mail: cs-secretariat@unibz.it
homepage: http://www.unibz.it/inf

Reasoning about Actions in
Transaction Logic

PhD Thesis in Computer Science

Mart́ın Rezk

Dissertation advisors:

Prof. Michael Kifer
Department of Computer Science

Stony Brook University
New York, U.S.A.

Prof. Werner Nutt
KRDB Research Centre

Faculty of Computer Science
Free University of Bozen-Bolzano

Bozen-Bolzano, Italy

Thesis Evaluated by:

Prof. José Alferes
Department of Computer Science
Faculdade de Cincias e Tecnologia

Universidade Nova de Lisboa
Lisbon, Portugal

Dr. Marco Montali
KRDB Research Centre

Faculty of Computer Science
Free University of Bozen-Bolzano

Bozen-Bolzano, Italy

Examination Committee:

Prof. Luigi Palopoli
Dipartimento di Elettronica,

Informatica e Sistemistica
Universita degli Studi della Calabria

Rende, Italy

Prof. Sandro Morasca
Department of Sciences of Culture,

Politics and Information
Universita degli Studi dell’Insubria

Como, Italy

Prof. Francesco Ricci
Faculty of Computer Science

Free University of Bozen-Bolzano
Bozen-Bolzano, Italy

Date of public defense: 23/04/2012

vi

vii

Abstract

This thesis introduces T RPAD (Transaction Logic with Partially Defined Ac-
tions)—an expressive formalism for reasoning about the effects of complex ac-
tions. T RPAD is largely based on a subset of Transaction Logic, but extends it
with special premise-formulas that generalize the data and transition formulas
of the original Transaction Logic. We develop a sound and complete proof the-
ory for T RPAD and illustrate the formalism on a number of non-trivial examples.
In addition, we show that most of T RPAD is reducible to ordinary logic program-
ming and that, in a well-defined sense, this reduction is sound and complete.

We also augment T RPAD with default negation, and along the way we define
a well-founded semantics for T RPAD, which, to the best of our knowledge, has
never been done before. Finally, as an application, we use T RPAD to give a
declarative semantics to the combination of production systems and ontologies.

The results obtained in this thesis significantly advance the state of the art
in the important subfield of Artificial Intelligence devoted to reasoning about
actions. We expect these results to find applications in intelligent agent systems,
semantic web services, question answering systems, and other areas.

Contents

Acknowledgments 1

1 Introduction 3

2 Preliminaries 13

2.1 First-Order Logic . 13

2.2 Logic Programs . 15

2.3 Transaction Logic . 21

3 Transaction Logic With Partially Defined Actions 29

3.1 Partially Defined Actions and Incomplete Information 30

3.2 Representing Actions with T RPAD 34

3.3 A Proof Theory for T RPAD . 40

3.4 Axioms of Inertia and Action Theory 41

3.5 Reducing Serial-Horn T R – to Logic Programming 52

3.6 Reducing T RPAD
D to Logic Programming 55

3.7 T RPAD with Default Negation . 60

3.8 Lifting The Interloping Restriction 68

3.9 Summary of the Contributions 70

4 Modeling Action Languages with T RPAD 73

4.1 Action Language L1 . 74

4.2 Motivating Examples . 82

4.3 Representing LA
1 in T RPAD . 84

4.4 Planning: L1 vs T RPAD . 86

4.5 Relationship with Other Action Languages 89

4.6 Considering T RPAD with default negation 92

4.7 Summary of the Contributions 92

ix

x Contents

5 Modeling Production Systems 95
5.1 Background on Description Logic 98
5.2 Related Work . 101
5.3 Combining Production Systems and Ontologies 102
5.4 Production Systems in T RPAD . 109
5.5 Summary of the Contributions 113

6 Conclusions 115

Appendices

A Inference System F 119

B Horn-T R – to T RPAD 125

C Horn-T R – to LP 135

D T RPAD to LP 141

E Well-founded Semantics 151

F L1 to T RPAD 175

G PS to T RPAD 185

Bibliography 203

Publications 211

Index 213

Acknowledgments

Each of us has his cowardice.
Each of us is afraid to lose, afraid
to die. But hanging back is the
way to remain a coward for life.
The Way to find courage is to seek
it on the field of conflict.

Masutatsu Oyama

Someone said that there is not such thing as silent gratitude, and maybe
s/he was right. Then one needs to sit down and come up with a list of names,
and find a way to say thanks. But before one writes the first line one realizes
the two main issues in this task: (i) the huge number of people that one is in
debt to, and (ii) how hard it is to thank without sounding like if it was just a
protocolar duty. These two problems leads us to the following—general—claim:
Greetings are not scalable. The more people we thank, the more it looks that
they did not contribute so much to the final result. However, in my case, I
truly owe a lot to many people, and that is because to be fair I would need
to thank not only those who helped me in the last four years, but in the last
twenty-nine. The people I want to mention here taught me how to overcome my
own cowardice, tackle each battle, learn from my losses, and prevail.

My family gave me the very first tools, principles, curiosity, and support.
It is so simple, and yet irreplaceable. My friends, spread all around the world:
Argentina, USA, Europe, Asia; have always been a safe shelter on this journey,
giving me advice, listening, shaping different views, opening new doors. My
teachers and professors showed me how and where to seek for knowledge, and
they put an order in the huge mess of ideas that I had in my head, they taught me
how to learn. In particular, Emmanuel (Kyokushin Karate instructor) taught
me something that became decisive to reach this point: The Japanese word
“OSU”. It means “to persevere whilst pushing oneself to the absolute limit”.

1

2 Acknowledgments

He taught me that as long as we can stand up, we are not over, and that we
must stand up, always, independently of the pain, or the challenge. There were
very hard times during my PhD studies, many more than I expected. But I was
not alone. Enrico Franconi and Diego Calvanese were two of the persons who
cared, and asked, and sought for solutions, intensively. And it was Michael Kifer
who, in the worse moment, helped me to stand up, taught me how to continue,
backed me up. And as it was not enough, he went beyond science, and showed
me how to think out of the box, not to judge too soon, not to listen too late.

Last but not least I would like to thank all the people here in Bolzano and
USA who helped me to complete this journey: my local supervisor Werner Nutt,
the reviewers of my thesis Marco Montali and Jose Alferes, and the members
of the group, colleagues, and friends Mariano (The tool) Rodriguez, Vlad (it is
ok) Ryzhikov , Elena (She knows) Botoeva, Babak Bagheri, Yazmin (the cook)
Ibanez, Ola (Hola) Kerhet, Manuel (THE german) Kirschner, Inanc (Wing) Sey-
lan, Tim (yellow) Knapik, Paul Fodor, Eddie (sensei) Cumming, Laura Alonso,
Mario (Mochi) Assis, Alessandro Mosca, Maria Keet, Simon Razniewski, and
the rest of the KRDB members.

Chapter 1
Introduction

And the reason I am so nervous is
that everything I do now is
leading me to one of three possible
futures... Which one will it be?
Time alone will tell. But still I
know that writing this diary can
perhaps provide the answer; it
may even help produce the right
future.

Adolfo Bioy Casares,
The Invention of Morel

Artificial Intelligence (AI) is the area of computer science that studies the
problem of how to make intelligent machines, especially intelligent computer
programs. One of the key issues in this field is how to represent knowledge about
a given domain, and how machines and systems (such as autonomous agents)
can use this representation to make decisions, and infer new information. In this
thesis we deal with one of the hardest aspects of the knowledge representation
problem: reasoning about the agents’ actions. To perform this task we need to
reason about change in dynamic domains. Thus, we must be able to specify [65]:

Base scenario: object identities, static properties, space.

Time: time-varying properties, time itself.

Actions: preconditions of elementary actions, effects of elementary actions,
nondeterministic actions, indirect effects of actions, and the cumulative
effects of complex actions.

3

4 Chapter 1. Introduction

A complex action is an action composed out of simpler constituent actions,
sometimes in rather complex ways. Let us present the following example to
clarify the concepts introduced above :

1.0.1. Example. [Block World] Suppose we need to model a robotic arm that
can move a block from the top of one block, to the top of another if the tops
of both blocks are clear and have the same color. The robotic arm can also be
idle. If the top of any of the blocks is not free, then the robotic arm recursively
clears the top of the blocks before moving them. The constituent actions of the
complex action move are to lift and drop the blocks.

Once this information has been specified, we could consider a concrete setting
with two violet blocks, blk1 and blk2 over a table and check if blk2 can be stacked
on the top of blk1 (c.f. Figure 1.1). �

Figure 1.1: Block World

Now, let us point out several key issues that must be specified to check if
blk2 can be stacked on the top of blk1.:

object identity: We must represent the fact that blk1, blk2, and the table are
not the same object.

static properties: We must represent the color of the blocks.

space: We must be able to deal with locations. We must represent the knowl-
edge that if blk1 and blk2 are in the table, then blk2 is not on the top of
blk1.

time-varying properties: We should represent properties that change with
time, like clearness of block tops.

5

time: We must represent the initial state where both blocks are in the table,
and the successor states resulting from the actions taken by the robotic
arm.

preconditions: We need to represent the restriction that the robotic arm can
only lift a block if its top is free, and it can stack a block only if the blocks
being stacked have the same color.

effects of elementary actions: We need to model that when the robotic arm
lifts a block, such block is not on the table anymore.

nondeterministic actions: We should be able to express that the robotic arm
can either move a block, or wait.

indirect effects: We must express that if a block breaks, it cannot be lifted
anymore.

cumulative effects of complex actions: We should represent the sequence
of action effects that define the complex action move.

Finally, to check if we can stack blk2 over blk1 we need to be able to reason over
the initial state using our knowledge about the world and the effects of actions.

The standard and most promising tool for representing knowledge and rea-
soning is logic. Initially, it was first order logic and the situation calculus [61]
was one of the first methodologies for reasoning about actions in that framework.
However, many researchers felt that the situation calculus was a cumbersome
and only partial solution to the problem. In particular, situation calculus did
not offer an elegant way to work with default reasoning [65]. Default reason-
ing allows to infer properties of the world without a complete description of
it. Some features of the world are by default assumed to be true or false. For
instance, in our example if we do not have information about a block blk3, we
assume that such block does not exist. That is, we jump to conclusions given
the lack of information. If new information becomes available that invalidates
those conclusions, then we must also retract those conclusions. Non-monotonic
logics offered a simple and yet effective way to perform such kind of reason-
ing. Thus, a number of advanced logical theories for reasoning about actions
and change based on non-monotonic formalisms were developed over the years.
Some of the best known theories are: Fluent Calculus and Flux [76, 62], Event
Calculus [51], A[35], L1[8], C[36], ALM[46]. However, existing approaches have
limitations such as the inability to define complex actions [35, 8, 36], performs
complex hypothetical tests [56, 76, 62, 35, 8], post-conditions for actions, and
recursive actions [35, 8, 36, 51] (further details can be found in Chapter 4). One
of the non-obvious consequences of relying on a logic is the need for axioms
of inertia (a.k.a. frame axioms). The issue here is that properties of an object

6 Chapter 1. Introduction

do not normally change without a cause (e.g. the color of a block remains the
same after the block is moved), and this is not a “built-in” amenity in most
logics. This problem has been called the frame problem [61]. Axioms of inertia
are logical statements intended to solve this problem. Different logics solve the
frame problem using different set of axioms, and this is a never-ending debate
about the merits of the different solutions [14].

In this thesis we tackle the problem of developing an expressive declara-
tive language that allows sophisticated and yet simple ways of describing and
reasoning about actions and change, allowing:

• complex actions,

• recursion,

• post-conditions for actions,

• complex hypothetical tests,

• rich domain domain descriptions, etc.

As applications of our formalism, we show how it benefits the planning prob-
lem (c.f. Chapter 4) and also describe its use as a logic language that gives
a declarative semantics to production systems and rule-based ontologies (c.f.
Chapter 5). However, these two contributions, regarding planning and produc-
tion systems, are to illustrate the power of our language and it is not the main
focus of this thesis.

The language proposed in this thesis is based on Transaction logic (T R).
Transaction logic [1, 11, 12] is a promising logic language that overcomes many
of the limitations of the existing approaches. It was intended as a formalism
for declarative specification of complex state-changing transactions in logic pro-
gramming; and it has been used for planning [11], knowledge representation [13],
active databases [11], event processing [3], workflow management and Semantic
Web services [23, 24, 73, 27], and as a declarative alternative to non-logical fea-
tures in Prolog, like the assert and retract operators [12]. In particular, in the
database area, T R serves as a declarative language for programming transac-
tions, for defining active rules, and for updating database views. In addition, it
is worth mentioning that T R has several implementations [43, 44, 75, 33, 82, 50].

The contributions provided in this thesis significantly advance the state of
the art in the important subfield of Artificial Intelligence dedicated to reasoning
about actions. We expect these results to find applications in intelligent agent
systems, semantic Web services, question answering systems, and other areas.

7

Modeling Actions in Transaction Logic

The idea behind T R is that by defining a new logical connective for sequencing
of actions and by giving it a model-theoretic semantics over sequences of states,
one gets a purely logical formalism that combines declarative and procedural
knowledge.

1.0.2. Example. As a motivating example, consider the US health insurance
regulations. The complexity of these laws makes it difficult to determine whether
a particular action, like information disclosure, or contacting a patient, is com-
pliant. To help along with this problem, [54] formalized a fragment of these
regulations in Prolog, but could not formalize temporal, state-changing regula-
tions. For instance, [54] had statements to express the fact that, to be compliant
with the law, a DNA test requires a doctor’s prescription and a patient’s con-
sent, but it was awkward to declaratively express the order in which these two
independent actions are to be performed. The sequencing operator of T R en-
ables these kinds of statements naturally. However, it has limitations to reason
about the effects of these actions. �

Although T R was created to program state-changing transaction, [10] demon-
strated that T R can do basic, yet interesting reasoning about actions. However,
[10] was unable to develop a complete proof theory, and the fragment of T R
studied there was not expressive enough for modeling many problems in the
context of action languages, for instance the Turkey Hunting problem [40]. A
number of sophisticated logical theories to reason about actions have been de-
veloped over the years, including A[35], L1[8], C[36], ALM[46]. Unfortunately,
most of such languages have their weak points along with the strong ones, and
none of them is sufficient as a logical foundation for agents.

In this thesis we develop a full-fledged theory—depicted in Figure 1.2—
Transaction Logic with Partially Defined Actions (T RPAD), for programming
and reasoning about actions over states. This theory extends T R with premise-
formulas, which generalize T R’s data and transition oracles, making the for-
malism more suitable for specifying partial knowledge about actions. The data
oracles in T R specifies a set of primitive database queries , i.e., the static se-
mantics of states; and the transition oracle specifies a set of primitive database
updates, i.e., the dynamic semantics of states.

In our example, we use T RPAD premises to express information about the
states. For instance, to express that in a state D2 the patient consents to a
DNA test or that executing the action do dna in state D1 leads to state D2.

It is worth noticing that T RPAD subsumes Horn-T R [1, 11, 12], a well-
studied and expressive fragment of Transaction Logic. The theory developed
here, T RPAD, has a great deal of sophistication in action composition, enabling

8 Chapter 1. Introduction

hypothetical, recursive, and non-deterministic actions. This allows to reason
about actions in highly complex scenarios, and not only about the effects of
future actions, but also about the causes and preconditions holding in the past.
For instance, coming back to our example, in T RPAD we can program an action
“do dna” that performs a DNA test if the patient gives an ok, but (assuming that
the hospital was in compliance) if the test was administered we can also infer
that the patient must have given her prior consent.

To carry out this kind of reasoning, we provide a sound and complete proof
system for this new formalism. We also show that, when we restrict the shape
of partial actions, such reasoning can be done by a reduction to ordinary logic
programming. This last contribution provides an easy way to implement and
experiment with the formalism, although a better implementation should be
using the proof theory directly, similarly to the implementation of the serial-
Horn subset of TR in FLORA-2 [50].

Finally, to boost the non-monotonic capabilities of T RPAD, we extend T RPAD

with default negation (a.k.a. negation as failure). Default negation allows a logic
system to conclude the negation of any atom that the system unsuccessfully
finishes exploring all possible proofs.

Our main focus in this thesis is the development of the formalism itself and
illustration of its capabilities.

Figure 1.2: T RPAD

Applying T RPAD

As an application, Chapter 5 develops a semantics for production systems aug-
mented with DL Ontologies, and embed it in T RPAD.

9

Production systems (PSs) are one of the oldest knowledge representation
paradigms in artificial intelligence, and are still widely used today. They are
applied to examine the health of data centers and networks [74], to enforce
constraints over databases [15], to test product’s quality [20], accounting [49],
to model human behavior [84], etc.

Such systems consist of a set of production rules that rely on forward chaining
reasoning to update the underlying database, called working memory. Tradi-
tionally, PSs have had only operational semantics, where satisfaction of rule
conditions is checked using pattern matching, and rule actions produce asser-
tions and deletions of facts from the working memory. PSs syntax and semantics
have been standardized as W3C’s Production Rule Dialect of the Rule Inter-
change Format (RIF-PRD) [80]. The RIF-PRD specification has a number of
limitations, however. First, it omits certain important primitives that are found
in many commercial production systems such as IBM’s JRules [49]. The FOR-
loop and the while-loop constructs are examples of such an omission. Second,
RIF-PRD still does not integrate with ontologies [6, 42]. Here, by ontology we
mean a formal representation of a domain of interest, expressed in terms of con-
cepts and roles, which denote classes of objects and binary relations between
classes of objects, respectively.

The integration of two knowledge representation languages with such differ-
ent semantics raises many questions. In particular, while a working memory can
be seen as a single interpretation structure (closed world semantics), an ontol-
ogy represents a possibly infinite set of interpretations (open world semantics),
namely the models of the ontology. Thus, it is necessary to define how to apply
rules to this set of models, and how we check for satisfaction/entailment of rule
conditions. On top of that, the rule applications can produce inconsistencies
between the working memory and the ontology that need to be solved.

To answer these questions we need to define a precise semantics (both model-
theoretic and computational) to the combination of rules, ontologies, and pro-
duction systems.

We provide both, (i) a new semantics for production systems augmented
with DL ontologies that includes looping-rules, and can handle inconsistency;
(ii) a sound embedding of the combination of PSs and rule-based ontologies into
T RPAD, which provides a model-theoretic semantics to the combination.

Our formalization is significantly more general than RIF-PRD or other ex-
isting formalizations of production rules in that it supports wider ontology inte-
gration and covers important extensions that exist in commercial systems such
as the aforesaid FOR-loop.

10 Chapter 1. Introduction

Summary of the Contributions

Our contribution in this thesis are as follows:

1. extension of T R with premise-formulas to express information about the
states, making the formalism more suitable for specifying partial knowl-
edge about actions;

2. defining a subset of the formalism, called T RPAD, and demonstrating its
expressive power for high-level descriptions of the behavior of complex
actions;

3. development of a sound and complete proof theory for T RPAD;

4. sound and complete reduction of the serial-Horn fragment of T R and the
deterministic subset of T RPAD to regular logic programming;

5. extension of T RPAD with default negation, and definition of a well-founded
semantics [79] for T RPAD,

6. relationship of the modeling and reasoning capabilities of T RPAD and the
action language L1, and a brief discussion about the relation between
T RPAD and the action languages Situation Calculus, Event Calculus, Flu-
ent Calculus, C and ALM;

7. new operational semantics for production systems augmented with DL
ontologies;

8. sound embedding of such combination (restricted to rule-based ontologies)
into T RPAD, giving in this way a model-theoretic semantics to the combi-
nation.

Structure of the Thesis

This thesis is organized as follows.

Chapter 2 presents the necessary background needed for this thesis. That is,
Transaction Logic needed to define T RPAD, First-Order Logic, and Logic
Programming needed in Chapter 4.

Chapter 3 defines an appropriate subset of T R, T RPAD, develops a sound
and complete proof theory for it, and provides numerous examples of the
use of T RPAD and its proof theory for complex reasoning tasks about
actions. It also proves that the frame axioms proposed in that chapter
behave as expected. That is, they correctly model the inertia laws. In

11

addition, it introduces a reduction from a fragment of T RPAD to Horn
logic programs and presents soundness and completeness results for this
reduction. Finally, it extends T RPAD with default negation and shows the
relation between the frame axioms with and without default negation.

Chapter 4 identifies and compares the modeling and reasoning capabilities
of T RPAD and the action language L1, reduces L1 to T RPAD, discusses
planning problems in both formalisms, and compares T RPAD with other
popular action languages: Situation Calculus, Event Calculus, ALM, C,
etc.

Chapter 5 presents the necessary background on production systems and De-
scription Logic needed for this Chapter. It explores the space of design
options for combining the traditional closed world semantics of PSs with
the open world semantics of DL and propose a new operational semantics
for such combination. Finally, it formalizes in T RPAD the semantics for
Production systems combined with rule-based ontologies.

Chapter 6 concludes the thesis.

All proofs are given in the appendices.

Chapter 2
Preliminaries

My undertaking is not difficult,
essentially. I should only have to
be immortal to carry it out.

Jorge Luis Borges,
Pierre Menard, Author of The

Quixote

2.1 First-Order Logic

The alphabet of a first-order language L includes a countably infinite disjoint
sets of variables V, constant symbols C, and predicate symbols P. A term is
a constant or a variable. Each predicate symbols has an arity n, which is a
non-negative integer. In this thesis we will use First-Order logic (FOL) (and
Description Logic) in Chapter 5–where we combine productions systems and
ontologies—as an ontology language. Thus, we will not include function symbols
here since neither description logics nor production systems use them.1

Our language, L, includes all the usual first-order operators ∨,∧,¬, ∀,∃,→,
= plus the symbol neg , which represents the explicit negation (also sometimes
called strong negation) [66]. The neg symbol applies only to atoms. In the
actual use in this thesis, ¬ will appear only in ontologies, while neg will be
used both in ontologies and in Transaction Logic. In a certain sense, which will
be made clear later, neg f will imply ¬f , but not vice versa.

1 Many production systems do use built-in and external functions and so do some DLs.
However, this does not bring any new or interesting issues in our context, so we disregard
functions (in FOL) in order to simplify the exposition.

13

14 Chapter 2. Preliminaries

Formulas are defined recursively as usual in first-order logic. A literal is
either an atomic formula f , or a formula of the form neg f where f is an atomic
formula. Atoms are also called positive literals. A negative literal is an
atom preceded with the symbol neg (e.g., neg p(X)).

Since in Chapter 5 we will be integrating ontologies with production systems,
we will need to use Herbrand domains and the unique name assumption. There-
fore, we will use the Herbrand semantics from the outset. As is well-known, this
semantics is equivalent to the general one for universal clausal form [59]. The
semantics defines semantic structures. The domain of a Herbrand semantic
structure is called the Herbrand universe U ; in our restricted case it is just the
set of all constants C in the language L. The Herbrand base B is a set of all
ground literals in the language. Note that the Herbrand universe and Herbrand
base are infinite, fixed, and depend only on the language L.

2.1.1. Definition. [Semantic Structure] A semantic structure M is a triple
〈∆,B, σ〉, where

• ∆ is the Herbrand universe.

• B is a subset of the Herbrand Base B.

• σ is a variable assignment, i.e., a mapping V −→ ∆. �

We now define satisfaction of formulas by semantic structures. If φ is a
formula of L, M is a structure for L, then satisfaction of φ in M is denoted
M |= φ. Given a structure M, and a term (i.e., constant or variable) t, we
define tM as: tM = σ(t) if t is a variable and tM = t if t is a constant. Note
that this implies the unique name assumption (UNA). That is, if c1, c2 ∈ C are
two distinct constants then cM1 6= cM2 .

The relation |= is defined recursively as follows:

• If t1 and t2 are terms, then M |= t1 = t2 if and only if tM1 = tM2 .

• If P is an n-place predicate letter in L and t1, . . . , tn are terms, then
M |= P (t1 . . . tn) if and only if P (tM1 . . . tMn) ∈ B.

• If P is an n-place predicate letter in P and t1, . . . , tn are terms, then
M |= negP (t1 . . . tn) if and only if negP (tM1 . . . tMn) ∈ B.

• M |= ¬φ if and only if it is not the case that M |= φ.

• M |= (φ ∧ ψ) if and only if M |= φ and M |= ψ.

• M |= (φ ∨ ψ) if and only if M |= φ or M |= ψ.

2.2. Logic Programs 15

• M |= ∀v : φ if and only ifM′ |= φ for every structureM′ that agrees with
M except possibly on the variable v.

• M |= ∃v : φ if and only ifM′ |= φ for some structureM′ that agrees with
M except possibly on the variable v.

A formula φ is valid, if M |= φ, for every structure M.

A formula φ is satisfiable if there is a structure M such that M |= φ.

If Γ is a set of sentences and ifM |= φ for each sentence φ in Γ, then we say
that M is a model of Γ. So a set of sentences is satisfiable if it has a model.

We say that Γ entails φ, written Γ |= φ, if and only if Γ ∪ {¬φ} is not
satisfiable.

2.2 Logic Programs

In this section we briefly remind the basic notions from standard logic program-
ming [60], which will be needed in this thesis.

Syntax.

The language L in traditional logic programming consists of:

• A countably infinite set of variables V.

• A countably infinite set of function symbols F , where constants are treated
as 0-arity function symbols.

• A countably infinite set of predicates P.

• The symbols {∀,∃,∧,→,neg ,not }

Terms are defined as usual in first order logic. We denote the set of all atoms
in the language as A. Atoms will be also called positive literals.

The symbol neg will be used to represent the strong negation [66]. The
symbol not will be used for default negation.

A literal is either an atom or it has one of the following negated forms:

neg f, not f, not neg f

where f is an atom. Literals that do not mention not are said to be not -free.
Otherwise we say they are not -literals.

A logic program is a collection of statements (called rules) of the form

∀X : (l0 ← l1 ∧ · · · ∧ lm ∧ not lm+1 ∧ . . . ∧ not ln) (2.1)

16 Chapter 2. Preliminaries

where each li is a literal and l0 is not -free. The literal l0 is called the head of
the rule r. The set of literals {l1, . . . , ln} is called the body of r. If the body
is empty, then ← can be dropped, and the it is a fact. By a clause we mean
either a rule or a fact.

Given a rule r of the form (2.1), the sets {l0}, {l1 . . . lm}, and {lm+1 . . . ln}
are referred to as head(r), pos(r) and neg(r) respectively. The set lit(t) stands
for head(r) ∪ pos(r) ∪ neg(r).

Following a standard convention, (2.1) will be simply written as:

l0 ← l1, . . . , lm,not lm+1, . . . ,not ln) (2.2)

An expression is called ground if it does not contain any variable.
Queries are statements of the form ∃X̄ : l1∧...∧lm, where l1, ..., lm are liter-

als and X̄ are all the variables mentioned in l1, ..., lm. The existential quantifier
is usually omitted and comma is used often in lieu of the conjunction symbol ∧.

A Horn logic program is a logic program that do not contain not -literals.
Analogously, a Horn query is a query that do not contain not -literals.

Semantics.

This Section reviews the main concepts of the well-founded semantics for logic
programs. We will follow the approach in [68]. However we will modify the
presentation to ease the understanding of the well-founded semantics for T RPAD.

First let us introduce some notation. Let P be a logic program. The domain
of P is the Herbrand universe U of L. The Herbrand base of P, denoted BP ,2

is the set of all instantiations of atoms in P using the terms from U .
This semantics uses three truth values, u, t and f, which stand for true,

false, and undefined and are ordered as follows: f < u < t. In addition, we will
use the following operator ∼: ∼ t = f, ∼ f = t, ∼ u = u.

2.2.1. Definition. [Partial Herbrand interpretation] A Partial Herbrand
interpretation is mapping from B 7→ {f,u, t} that assigns a truth value, f,u,
or t, to every formula φ in B. �

2.2.2. Definition. [Satisfaction] Let I be a partial Herbrand interpretation,
f a ground not -free literal, and l1 . . . ln literals. We define truth valuations
with respect to the path structure I as follows:

• I(f) was already defined as part of the definition of partial Herbrand
interpretation.

• I(l1 ∧ l2) = min(I(l1), I(l2))

2We will omit the subindex when it is clear from the context.

2.2. Logic Programs 17

• I(notφ) =∼ I(φ)

• I(f ← l1 ∧ · · · ∧ ln) = t iff I(f) ≥ I(l1 ∧ · · · ∧ ln)

We write I |= φ and say that φ is satisfied in the structure I if I(φ) = t. �

2.2.3. Definition. [Model of P] A partial interpretation I is a model of a
program P if and only if for all ground instances of the form (2.2) in P

I(l0) ≥min{I(l1), . . . , I(lk)}

�

There are two natural orderings between interpretations, one of them, �c, is
called the truth ordering. The other one, ≤c is called the information ordering
and coincides with set-theoretic inclusion.

Given two partial Herbrand interpretations N1 and N2, we say that

• N1 ≤c N2 iff all not -free literals that are true in N1 are true in N2 and
all not -literals that are true in N1 are true in N2.

• N1 �c N2 iff all not -free literals that are true in N1 are true in N2 and
all not -literals that are true in N2 are true in N1.

2.2.4. Definition. [Least Model] A model M of a program P is minimal with
respect to �c iff for any other model, N, of P, if N �c M then N = M. The
least model of P, denoted LPM(P), is a minimal model that is unique. �

The following definition is key to the notion of well-founded models.

2.2.5. Definition. [Quotient Operator] Let P be a logic program, and I be any
partial interpretation. By the quotient of P modulo I we mean a new program,
P
I , which is obtained from P by replacing in every clause of P all negative
premises not l which are true (respectively undefined; respectively false) in I by
their corresponding truth value t (respectively, u, f). �

2.2.6. Proposition. [69] Let P be a logic program, and I be any partial in-
terpretation. Then P

I is not -free and therefore it has a unique least partial
model.

The least partial model of a program can be obtained as the least fixed
point of the immediate consequence operator T̂ , defined below. The following
definition assumes that the program has already been grounded.

18 Chapter 2. Preliminaries

2.2.7. Definition. [Consequence Operator][69] Let P be a logic program and
let I be an interpretation. We define T̂ (I) as follows:

T̂ (I) = LPM(
P

I
)

The ordinal powers of the consequence operator T̂ are then defined inductively
as follows:

• T̂ ↑0(I∅) = I∅

• T̂ ↑n(I∅) = T̂ (T̂ ↑n−1(I∅)), if n is a successor ordinal

• T̂ ↑ω(I∅) =
⋃
j≤ω T̂

↑j(I∅), if ω is a limit ordinal �

2.2.8. Proposition. The sequence of interpretations T̂ ↑n described in Defini-
tion 2.2.7 is monotonic and thus has a fixed point T̂ ↑n with the property that

T̂ ↑n = T̂ ↑n+1

Next we give the constructive definition of the well-founded models of logic
programs as iterated fixed points of the consequence operator T̂ .

2.2.9. Definition. [Well-founded] The well-founded model of a logic pro-
gram P, written WFM(P), is defined as the limit of the sequence of interpreta-
tions T̂ ↑n described in Definition 2.2.7 �

2.2.10. Theorem. [69] WFM(P) is the least model of P.

Let P be a program and q a query. For simplicity we assume that q
is a ground formula. We say that the program P’s answer to q is yes if
WFM(P)(q) = t, no if WFM(P)(not q) = f, and unknown otherwise.

Stable model semantics for Logic Programs

In this section, we review the main concepts of stable model semantics [34]
needed in Chapter 4. For the sake of simplicity, we assume that logic rules are
written as

l0 ← l1, . . . , ln,not ln+1, . . . ,not lk, (2.3)

where l1 . . . lk are not -free.

2.2.11. Definition. [Herbrand interpretation] A Herbrand interpretation,
M, is consistent a subset of the Herbrand base. �

2.2. Logic Programs 19

Observe that under stable model semantics, interpretations are 2-valued.
Satisfaction of a formula φ by Herbrand interpretation, M, denoted M |= φ, is
defined as follows:

• M |= l, where l is a (not -free) literal, iff l ∈M.

• M |= φ1 ∧ φ2, iff M |= φ1 and M |= φ2.

• M |= notφ, iff it is not the case that M |= φ.

• M |= r, where r is a ground rule of the form (2.3), iff l0 ∈ M whenever
M |= l1 ∧ . . . ln and M |= not (ln+1 ∧ . . . lk).

Given a not -free program P, we write M |= P if M |= r for every rule
r ∈ P. In this case we say thatM is a stable model (a.k.a. answer set) of P.
It is known that every not -free program P has a unique least model [4]—a
modelM0 such that for any other model N of P, l ∈M0 implies l ∈ N for any
l ∈ BP.

To extend the definition of stable model (answer set) to arbitrary programs,
take any program P, and let I be a Herbrand interpretation in L. The reduct,
P(S), of P relative to S is obtained from P by first dropping every rule of the
form (2.3) such that {ln+1, . . . , lk}∩I = ∅; and then dropping the {ln+1, . . . , lk}
literals from the bodies of all remaining rules. Thus P(I) is a program without
default negation.

2.2.12. Definition. [Stable Model] A Herbrand interpretationM is an stable
model for P if M is an answer set for P(I). �

Observe that no every program has stable models, for instance

p← not p

has no stable models.

2.2.13. Definition. [Entailment] A program P entails a ground literal l, writ-
ten P |= l, if l is satised by every stable model of P. �

Let P be a program and q is a query. For simplicity we assume that q is a
not -free literal. We say that the program P’s answer to q is yes if P |= q, no if
P |= not q, and unknown otherwise.

Splitting Sets: In the following, we will work with stratified programs. Intu-
itively, a program P is stratified if it can be partitioned into (disjoint) strata
P1 . . . Pn such that: (i) P = P1 ∪ · · · ∪ Pn, (ii) P0 is not -free, and (iii) all the
negative literals in Pi (0 < i ≤ n) are only allowed to refer to predicates that

20 Chapter 2. Preliminaries

are already defined in Pi−1. Intuitively, in a stratified program P, the intended
model is obtained via a sequence of bottom-up derivation steps. In the first
step, P is split into stratums. The first stratum is a bottom part that does not
contain negation as failure. Since this subprogram is positive, it has a unique
stable model. Having substituted the values of the bottom predicates in the
bodies of the remaining rules, P is reduced to a program with fewer strata. By
applying the splitting step several times, and computing every time the unique
stable model of a positive bottom, we will arrive at the intended model of P.
Further details can be found in [67].

2.2.14. Definition. [Splitting Set [57]] A splitting set for a program P is
any set U of literals such that for every rule r ∈ P, if head(r) ∩ U 6= ∅ then
lit(r) ⊂ U . If U is a splitting set for P, we also say that U splits P . The set
of rules r ∈ P such that lit(r) ⊂ U is called the bottom of P relative to the
splitting set U and denoted by bU (P). The subprogram P \ bU (P) is called the
top of P relative to U . �

2.2.15. Definition. [Partial Evaluation] The partial evaluation of a pro-
gram P with splitting set U with respect to a set of literals X, is the program
eU (P, X) defined as follows. For each rule r ∈ P such that

(pos(r) ∩ U) ⊂ X and (neg(r) ∩ U) ∩X = ∅

put in eU (P, X) all the rules r′ that satisfy the following property

head(r′) = head(r)
pos(r′) = pos(r) \ U
neg(r′) = neg(r) \ U

�

2.2.16. Definition. [Solution] Let U be a splitting set for a program P. A
solution to P with respect to U is a pair (X,Y) of literals such that

• X is an stable model for bU (P)

• Y is an stable model for eU (P \ bU (P), X)

• X ∪ Y is consistent. �

2.2.17. Example. [8] Consider the following program P :

a← b,not c
b← c,not a
c←

2.3. Transaction Logic 21

The set U = {c} splits P; the last rule of P belongs to the bottom and the first
two rules from the top. Clearly, the unique stable model for the bottom of P
is {c}. The partial evaluation of the top part of P consists in dropping its first
rule, because the negated subgoal c makes it useless, and in dropping the trivial
positive subgoal c in the second rule. The result of simplification is the program
consisting of one rule

b← not a (2.4)

The only stable model for P can be obtained by adding the only stable model
for (2.4), which is {b}, to the stable model for the bottom used in the evaluation
process, {c}. �

2.2.18. Proposition. [57] Let U be a splitting set for a program P. A set S
of literals is a consistent stable model for P if and only if S = X ∪ Y for some
solution (X,Y) of P with respect to U .

2.3 Transaction Logic

This section briefly reviews the syntax and model theory of a subset of Trans-
action Logic, which we call T R –, that is necessary for understanding the results
of this thesis. One restriction on T R – are that it uses only the explicit nega-
tion neg (sometimes called strong negation [66]). This negation is a weaker
form of classical negation, and it applies only to fluents, not actions. Another
restriction is that T R – uses only one particular type of database states and
update operators, known as the “relational oracle”. In Sections 3.5 and 3.6,
these restrictions will enable us to reduce various subsets of interest of T R – to
ordinary logic programming.

Syntax.

The alphabet of a language, LT R, of T R – consists of:

• A countably infinite set of variables V.

• A countably infinite set of function symbols F , where constants are treated
as 0-arity function symbols.

• A countably infinite set of predicates P. This set is further partitioned
into two countably infinite subsets, Pfluents and Pactions. The former will
be used to represent facts in database states and the latter transactions
that change those states. Querying a fluent can be viewed as an action
that does not change the underlying database state.

22 Chapter 2. Preliminaries

• Logical connectives ∧, ∨, the implication connectives← and→, sequential
conjunction ⊗, and hypothetical operator ♦.

• The explicit negation connective neg .

• Quantifiers ∀ and ∃.

Terms are defined as usual in first-order logic. Formulas in Transaction Logic
are called transaction formulas; they extend the syntax of first-order logic as
defined next.

A transaction formula is defined recursively as follows.

• An atomic formula is an expression of the form p(t1 . . . tn) where p ∈ P
is a predicate symbol, and t1, . . . , tn are terms. Atoms are also called pos-
itive literals. A negative literal is an atom preceded with the symbol
neg . A literal whose predicate symbol is in Pfluents will be referred to
as a fluent literal. If the predicate symbol is in Paction, the literal will
be called transactional (or action) literal. Action literals are always
positive and cannot be preceded with neg (but fluent literals can).

• If φ and ψ are transaction formulas then so are the following expressions:

– “Classical” conjunction and disjunction: φ ∧ ψ, φ ∨ ψ

– Left and right implication: φ← ψ, ψ → φ

– Serial conjunction: φ⊗ ψ

– Hypothetical execution: ♦φ

– Quantification: ∀Xφ,∃Xψ, where X is a variable.

• A transaction is a statement of the form ?- ∃X̄φ, where φ = l1⊗· · ·⊗ lk
is a serial conjunction of literals (both fluent and action literals) and X̄ is
the list of all the variables that occur in φ.

Transactions in T R – are analogous to (and generalize) the notion of
queries in ordinary logic programming.

• A transaction base is a set of transaction formulas.

Informally, a serial conjunction of the form φ ⊗ ψ is an action composed of
an execution of φ followed by an execution of ψ. When φ and ψ are conjunctions
of fluents, the serial and classical conjunctions behave identically, i.e.,

f1 ∧ ... ∧ fn ≡ f1 ⊗ ...⊗ fn

2.3. Transaction Logic 23

We will also be often using the usual De Morgan’s laws, such as neg neg f ≡ f
and neg (f ∧ g) ≡ neg f ∨ neg g. This allows us to apply neg to complex
formulas and not just the atomic ones. For example,

neg (f1 ∧ f2) ≡ neg f1 ∨ neg f2

neg (f1 ∨ f2) ≡ neg f1 ∧ neg f2

neg (neg f1 ∨ neg f2) ≡ f1 ∧ f2

A hypothetical formula, ♦φ, represents an action where φ is tested hypo-
thetically whether it can be executed at the current state. However, no actual
changes to the current state takes place. Implications, that can be written
φ ← ψ and ψ → φ, can be understood as statements that φ is a call to a
complex action (a.k.a. compound actions or complex transaction) and ψ is the
definition of (the actual course of action for) that transaction. In Section 3.1
we will see another use of the implication → for partial action definitions. We
assume that the set of all fluent predicates is partitioned into base fluents and
derived fluents. Base fluents can appear only as facts, while derived fluents
can appear in the heads of fluent rules, but they cannot appear as facts. In ad-
dition to the user defined predicate symbols, in T R – there are built-in actions
called elementary transitions for basic manipulation of states. These include
delete(f) and insert(f) for every ground base fluent literal f . Intuitively, delete
and insert deletes and inserts facts respectively.

The following examples illustrates the above concepts. We will follow the
usual logic programming convention whereby lowercase symbols represent con-
stants, function, and predicate symbols, and the uppercase symbols represent
variables that are universally quantified outside of the rules. Universal quanti-
fiers are omitted, as usual.

2.3.1. Example. [Block World, continued] Consider Example 1.0.1 with the
following additional feature: a block can be moved only if it is light. In the
rules, below, move, free, put on table, delete, and insert represent actions and on, clear ,

24 Chapter 2. Preliminaries

light, color , not broken, and weight are fluents.

(i) move(X,Y) ← on(X,Z)⊗ clear(X)⊗ not broken(X)⊗
clear(Y)⊗ not broken(Y)⊗ light(X)⊗ color(X,W)⊗
color(Y,W)⊗ delete(on(X,Z))⊗ insert(on(X,Y))
⊗delete(clear(Y))

(ii) move(X,Y) ← on(Z,X)⊗ free(Z,X)⊗ move(X,Y)
(iii) move(X,Y) ← on(Z, Y)⊗ free(Z, Y)⊗ move(X,Y)
(iv) free(X,Y) ← clear(X)⊗ clear(Y)⊗ not broken(X)⊗

put on table(X)⊗ delete(on(X,Y))⊗ insert(clear(Y))
(v) free(X,Y) ← on(W,X)⊗ free(W,X)⊗ free(X,Y)

(vi) light(X) ← weight(X,W)⊗ limit(L)⊗W < L
(vii) put on table(X) ← insert(on(X, table))

(viii) ?- move(blk1, blk2)⊗ move(SomeBlk, blk1)

Rules (i), (ii) and (iii) define the complex action for moving a block from
the top of one block, to the top of another.

This action is defined in terms of the built-in elementary updates insert and
delete and the complex action free that recursively clear the tops of the blocks.
The action free is defined in the rules (iv) and (v). Rule (vi) defines the fluent light,
which is used in the definition of move. That rule consists exclusively of fluents
and thus is a regular logic programming rule. Since all the literals involved in
the definition of light are fluents, they cause no state transitions and the use of
serial conjunction ⊗ in that rule is equivalent to the use of classical conjunction
∧. Thus, rule (vi) could also be written as

light(X)← weight(X,W) ∧ limit(L) ∧W < L

Rule (vii) defines the action put on table. The last statement in the example is
an update transaction, which moves block blk1 from its current position to the
top of blk2 and then finds some other block and moves it on top of blk1. For
instance, if the current database state is

D1 = {clear(blk1), clear(blk2), clear(blk3), on(blk1, table), on(blk3, table),
on(blk2, table), color(blk1, red), not broken(blk1),
color(blk2, red), color(blk3, red), not broken(blk2), not broken(blk3)}

then execution of the transaction move changes the database state to

D2 = D1 \ {clear(blk2), on(blk1, table)} ∪ {on(blk1, blk2)}

(assuming that all the blocks involved satisfy the predicate light above) and
then, instantiating SomeBlk to blk3, to

D3 = D2 \ {clear(blk1), on(blk3, table)} ∪
{on(blk3, blk1)}

�

2.3. Transaction Logic 25

Model Theory.

In T R –, truth of a transaction is defined over sequences of states, called ex-
ecution paths (or simply paths). When the user executes a transaction, the
underlying database may change, going from the initial state to some other
state. In doing so, the execution may pass through any number of intermediate
states.

2.3.2. Definition. [State] A database state (or simply state) is a set of
ground (i.e., variable-free) fluent literals. �

For example the execution of insert(a) ⊗ insert(b) ⊗ insert(neg c) takes
a relational database from an initial state D through the intermediate states
D1 = D ∪ {a} \ {neg a} and D2 = D1 ∪ {b} \ {neg b}, to the final state
D3 = D2 ∪ {neg c} \ {c}.

Figure 2.1: Actions in T R –

In this thesis, we will use only the Herbrand semantics for T R –. The se-
mantics defines path structures, which generalize the usual first-order semantic
structures (also called interpretations). As in first-order logic, the domain of
Herbrand path structures is called the Herbrand universe U ; it is the set of all
ground first-order terms that can be constructed from the function symbols in
the given language LT R. The Herbrand base B is a set of all ground literals
in the language. A classical Herbrand structure is a subset of B. Note that
the Herbrand structure and Herbrand base are infinite, fixed, and depend only
on the language LT R, not on the transaction base. Since this thesis deals with
Herbrand path structures only, we shall often omit the adjective “Herbrand.”

A central feature in the semantics of T R – is the notion of (execution) paths
and the associated operation of splitting of paths into subpaths.

2.3.3. Definition. [Path and split] An execution path of length k, or a k-
path, is a finite sequence of states, π = 〈D1 . . . Dk〉, where k ≥ 1. A split of π

26 Chapter 2. Preliminaries

is a pair of subpaths, π1 and π2, such that π1 = 〈D1 ... Di〉 and π2 = 〈Di ... Dk〉
for some i (1 ≤ i ≤ k). In this case, we write π = π1 ◦ π2. �

It is worth noting that T R – distinguishes between a database state D and
the path 〈D〉 of length 1. Intuitively, D represents the facts stored in the
database, whereas 〈D〉 represents the superset of D that can be derived from D
and the rules in the transaction base.

T R is parametrized by data and transition oracles. The data oracles specifies
a set of primitive database queries, i.e., the static semantics of states; and the
transition oracle specifies a set of primitive database updates, i.e., the dynamic
semantics of states. However, the formalism developed in Chapter 3, T RPAD,
does not use any oracles—data or transition. Instead, the T RPAD provides
statements called premises that generalize these oracles.

2.3.4. Definition. [Herbrand Path Structures] A Herbrand path struc-
ture, M, is a mapping that assigns a classical Herbrand structure to every
path. This mapping is subject to the following restrictions, for all states D, D1,
D2 and base fluent p:

1. D ⊆M(〈D〉)

2. insert(p) ∈M(〈D1,D2〉) iff D2 = D1 ∪ {p} \ {neg p}.

3. delete(p) ∈M(〈D1,D2〉) iff D2 = D1 \ {p} ∪ {neg p}.

Note that delete(p) is equivalent to insert(neg p). �

Intuitively, Herbrand path structures in T R have the same role a transition
functions in temporal logics like CTL or µ-Calculus [29]. That is, they are
relations between states and actions. However, while transition functions take a
state and an action and return a set of states, a Herbrand path structure takes
paths of the form 〈D1 . . .Dn〉 and returns the set of actions that are executable
at D1 and for which at least one execution ends in state Dn (actions in T R can
be non-deterministic).

The following definition formalizes the idea that truth of T R – formulas is
defined on paths. Intuitively, each atom that is true on a path represents a
transaction whose execution causes the state changes specified by the path. As
in classical logic, to define the truth value of quantified formulas we use the
notion of variable assignment. A variable assignment (or an instantiation)
is a mapping ν : V −→ U , which takes a variable as input and returns a
Herbrand term as output. We extend the mapping from variables to terms in
the usual way: ν(f(t1, . . . , tn)) = f(ν(t1), . . . , ν(tn)). The mapping can be
extended to literals in a similar fashion.

2.3. Transaction Logic 27

2.3.5. Definition. [Satisfaction] Let M be a Herbrand path structure, π be
a path, and ν be a variable assignment.

1. Base case: If p is a literal, thenM, π |=ν p if and only if ν(p) ∈M(π).

2. “Classical” conjunction and disjunction: M, π |=ν φ∧ψ iff M, π |=ν

φ and M, π |=ν ψ. Similarly, M, π |=ν φ ∨ ψ iff M, π |=ν φ or
M, π |=ν ψ.

3. Implication: M, π |=ν φ← ψ (orM, π |=ν ψ → φ) iff wheneverM, π |=ν

ψ then also M, π |=ν φ.

4. Serial conjunction: M, π |=ν φ ⊗ ψ iff M, π1 |=ν φ and M, π2 |=ν

ψ for some split π1 ◦ π2 of path π.

5. Universal and existential quantification: M, π |=ν (∀X)φ iff M, π |=µ

φ for every variable assignment µ that agrees with ν everywhere except
on X.

M, π |=ν (∃X)φ iff M, π |=µ φ for some variable assignment µ that
agrees with ν everywhere except on X.

6. Executional possibility: M, π |=ν ♦φ iff π is a 1-path of the form
〈D〉, for some state D, and M, π′ |=ν φ for some path π′ that begins at
D. �

As in classical logic, the variable assignment can be omitted for sentences, i.e.,
for formulas with no free variables. From now on, we will deal only with sen-
tences, unless explicitly stated otherwise. If M, π |= φ, then we say that
sentence φ is satisfied (or is true) on path π in structure M.

2.3.6. Definition. [Model] A path structure,M, is a model of a formula φ
if M, π |= φ for every path π. In this case, we write M |= φ. A path structure
is a model of a set of formulas if it is a model of every formula in the set. �

Executional Entailment.

A T R – program consists of two distinct parts: a transaction base P and an
initial database state D. The database is a set of fluents and the transaction
base is a set of transaction formulas. With this in mind we can define execu-
tional entailment, a concept that relates the semantics of T R – to the notion of
execution.

2.3.7. Definition. [Executional entailment] Let P be a transaction base, φ a
transaction formula, and let D0 . . .Dn be a sequence of databases. Then the
following statement

P,D0 . . .Dn |= φ (2.5)

28 Chapter 2. Preliminaries

is said to be true if and only if M, 〈D0 . . .Dn〉 |= φ for every model M of P.
Related to this is the following statement

P,D0--- |= φ

which is true if and only if there is a database sequence D0 . . .Dn that makes
(2.5) true. �

Intuitively (2.5) says that a successful execution of transaction φ, over the trans-
action base P, can change the database from state D0 to D1 . . . to Dn.

Serial-Horn Transaction Bases.

One particular well-studied subset of Transaction Logic consists of so-called
serial-Horn rules. This subset has a sound and complete SLD-style proof theory,
and Section 3.5 shows that under certain assumptions this subset is reducible
to ordinary logic programming.

Serial-Horn T R –, is the fragment of T R – that consists of serial-Horn rules.
A serial-Horn rule is a statement of the form

c← c1 ⊗ · · · ⊗ cn (2.6)

where the body of the rule is a serial-Horn goal, c is an atom and n ≥ 0. If the
rule head is a fluent literal then we require that all the body literals are also
fluents. We will refer to this last type of rules as fluent rules. A serial-Horn
goal has the form c1⊗· · ·⊗cn, where each ci is a literal or an hypothetical-serial
goal. Recall that a literal can be either a fluent or an action, and action literals
are always positive. A serial-Horn rule can be understood as a statement that
c is an invocation sequence of a complex action and c1 ⊗ · · · ⊗ cn is a definition
of the actual course of action to be performed by that transaction. It is worth
noticing that c can be defined by more than one serial-Horn rule.

Figure 2.2: Horn-Rules

Consider a rule of the form (2.6). We will say that c is a compound action
(a.k.a. complex action) if c is an action atom. We will say that c is a defined
fluent if c is a fluent literal. A serial-Horn transaction base is a finite set
of serial-Horn rules. Note that Example 2.3.1 is serial-Horn.

Chapter 3
Transaction Logic With Partially
Defined Actions

There are no moral or intellectual
merits. Homer composed the
Odyssey; if we postulate an
infinite period of time, with
infinite circumstances and
changes, the impossible thing is
not to compose the Odyssey, at
least once.

Jorge Luis Borges
The Immortal

Transaction Logic (T R) [1, 11, 12] was intended as a formalism for declara-
tive specification of complex state-changing transactions in logic programming.

Although T R was created to program state-changing transactions, [10]
demonstrated that T R can do basic, yet interesting reasoning about actions.
However, [10] was unable to develop a complete proof theory, and the fragment
of T R studied there was not expressive enough for modeling many problems
in the context of action languages (cf. Example 3.2.3). In this section we
continue that investigation and develop a full-fledged theory, Transaction Logic
with Partially Defined Actions (T RPAD), for reasoning about actions over states
in addition to programming the actions.
T RPAD deviates from T R – in that: (i) T RPAD includes premise-formulas;

(ii) it does not make use of the data or transition relational oracles, since they
are generalized using premises (c.f. Section 3.1); (iii) it does not have built-in
actions, since they can be represented using partially defined actions; and (iv)
it allows default negation.

29

30 Chapter 3. Transaction Logic With Partially Defined Actions

Our main focus in this chapter is the development of the formalism itself
and illustration of its capabilities. T RPAD has a great deal of sophistication
in action composition, enabling hypothetical, recursive, and non-deterministic
actions. In particular, compared with other actions languages like [39, 35, 8,
17, 38, 16], T RPAD supports more general ways of describing actions and can
be more selective in when and whether the fluents are subject to the laws of
inertia.

Our contribution in this chapter is many-fold: (i) extension of T R with
premise-formulas, which make T R more suitable for specifying partial knowl-
edge about actions; (ii) defining a subset of the resulting formalism, called
T RPAD, and demonstrating its expressive power for high-level descriptions of the
behavior of complex actions; (iii) development of a sound and complete proof
theory for T RPAD; (iv) a sound and complete reduction of the definite subset
of T RPAD to regular logic programming; and (v) an extension of T RPAD with
default negation under a variant of the well-founded semantics [79] for T RPAD.
The reduction of the definite subset of T RPAD to regular logic programming
provides an easy way to implement and experiment with the formalism.

3.1 Partially Defined Actions and Incomplete Infor-
mation

This section extends T R – making it suitable for representing commonsense
knowledge about actions and for reasoning about their effects in the presence of
incomplete information. We introduce so-called premise formulas, which gener-
alize the relational data and transition oracles, and then propose a sublanguage
of the resulting extended formalism. The new formalism, called T RPAD, is a
substantial generalization of the serial-Horn subset of T R –, which was studied
in [1, 11, 12] and briefly described in Section 2.3. It has a sound and com-
plete proof theory, is much more expressive, and better lends itself to complex
representational and reasoning tasks about actions.

The alphabet of a language, LT RPAD , of T RPAD is defined as in T R –. For
convenient reference we will repeat it here. LT RPAD consists of:

• A countably infinite set of variables V.

• A countably infinite set of function symbols F , where constants are treated
as 0-arity function symbols.

• A countably infinite set of predicates P. This set is further partitioned into
two countably infinite subsets, Pfluents and Pactions. As before, fluents are
further partitioned into base fluents and derived fluents. Recall that
derived fluents are those fluents that appear in the head of some fluent
rule. Base fluents are the fluents which are not defined by Horn-rules.

3.1. Partially Defined Actions and Incomplete Information 31

• Logical connectives ∧, ∨, the implication connectives← and→, sequential
conjunction ⊗, and hypothetical operator ♦.

• The explicit negation connective neg .

• Quantifiers ∀ and ∃.

T RPAD consists of serial-Horn rules (including fluent rules, c.f. Section
2.3), partial action definitions (PADs), and certain statements about action
execution, which we call premises. A premise is a new kind of formula that was
not in the original Transaction Logic (and thus not in T R –).

A partial action definition (or a PAD) is a statement of the form:

b1 ⊗ α⊗ b2 → b3 ⊗ α⊗ b4 (3.1)

where b1 and b2 are conjunctions of fluent literals, b3 and b4 are conjunctions
of base fluent literals, and α is an action atom. The serial conjunction ⊗ binds
stronger than the implication, so the above PAD statement should be interpreted
as (b1 ⊗ α⊗ b2)→ (b3 ⊗ α⊗ b4)). We will say that b1 is a precondition of the
action α and b4 is its effect. In addition, b2 will be called post-condition and
b3 is a pre-effect. Intuitively, (3.1) means that whenever we know that b1 holds
before executing α and b2 holds after, we can conclude that b3 must have held
before executing α and b4 must hold as a result of α (c.f. Figure 3.1). Observe
that in absence of pre-effects and post-conditions, PADs can be seen as actions
in STRIPS [30].

Figure 3.1: PADs

For instance, the PAD,

alive turkey ⊗ shoot⊗ neg alive turkey → loaded ⊗ shoot

states that if a turkey is alive before firing the gun and is dead after the shooting,
then we can conclude that the gun was loaded initially.

32 Chapter 3. Transaction Logic With Partially Defined Actions

Since b1, b2, b3, and b2 are conjunctions of fluents, the serial and classical con-
junctions behave identically, since for fluents the semantics of T R – guarantees
that

f1 ∧ ... ∧ fn ≡ f1 ⊗ ...⊗ fn

Each individual conjunct in b1 will also be called a primitive precondition
and in b2 a primitive post-condition. Similarly, each individual conjunct in
b3 will be referred to as a primitive pre-effect and in b4 as primitive effect.

Like T R –, T RPAD uses only relational underlying states, i.e., they are simply
sets of fluents. It is crucial to note that T RPAD does not use any oracles—data
or transition—because they are “black boxes” for the logic. Moreover, T RPAD

makes no use of the built-in actions insert(f) and delete(f) defined by transition
oracles, since they can be axiomatized by the following PADs:

insert(f)→ insert(f)⊗ f
g ⊗ insert(f)→ insert(f)⊗ g where g 6= f and g 6= neg f
delete(f)→ delete(f)⊗ neg f
g ⊗ delete(f)→ delete(f)⊗ g where g 6= f and g 6= neg f

Intuitively, transition oracles are replace by run-premises of the form

d1
insert(f)
 d2

Observe that in T R – we were unable to refer explicitly to the facts in a given
state, and moreover, relational data oracles need complete information about the
database states to be well-defined. Thus, T R – was not suitable for describing
domains with incomplete information. To overcome this problem we make use
of state premises, defined below. States premises can describe partially the
database states. All these concepts will be illustrated with the examples in
Section 3.2.

To sum up, in T RPAD we will not distinguish built-in actions in any way.
However, we will be distinguishing between partially defined actions (abbr.,
pda) and complex actions. Partially defined actions cannot be defined by
Horn rules—they can be defined by PADs only. In contrast, complex actions
will be defined by Horn rules only, not by PADs. An important point is that
pdas can appear in the rule bodies that define complex actions and, in this way,
T RPAD can be used to create larger action theories out of smaller ones in a
modular way.

A T RPAD transaction base is a set of serial-Horn rules and partial action
definitions.

One key addition that T RPAD brings to T R is the notion of premises. In
premises, states are referred to with the help of special constants called state

3.1. Partially Defined Actions and Incomplete Information 33

identifiers. We will be usually using boldface lowercase letters d, d1, d2, to
represent them. In T R, state identifiers are not part of the language, since T R
formulas never refer to database states explicitly. In the following, for the sake
of simplicity, we will refer to state identifiers just as states.

3.1.1. Definition. [Premise] A premise is a statement that has one of the
following forms:

• A state-premise: dB f , where f is a fluent and d a database identifier.
Intuitively, it means that f is known to be true at state d.

• A run-premise: d1
α
 d2, where α is a partially defined action. Intuitively

it says that execution of action α in state represented by d1 is known to
lead to state denoted by d2 (among others).1

A T RPAD specification—depicted in Figure 3.2—is a pair (P,S) where P is a
T RPAD transaction base, and S is a set of premises. �

Intuitively, the set of premises can be viewed as a transition system, where
is the transition relation.

Figure 3.2: T RPAD Specification

Usually, premises are statements about the initial and the final database
states, and statements about some possible executions of partially defined ac-
tions. Typically these are partial descriptions so several different database states
may satisfy the state-premises and several execution paths may satisfy the run-
premises. Let us now turn to the semantics of T RPAD specifications.

1 In general, an action can be non-deterministic and may non-deterministically move to any
one of a number of states.

34 Chapter 3. Transaction Logic With Partially Defined Actions

3.1.2. Definition. [Herbrand Path Structures] A Herbrand path struc-
ture, M, is a mapping that assigns a classical Herbrand structure to every
path. This mapping must satisfy the following condition for every state D:

D ⊆M(〈D〉)

In addition, M includes a mapping of the form ∆M : State identifiers −→
Database states, which associates states to state identifiers. We will usually
omit the subscript in ∆M.

A path abstraction is a finite sequence of state identifiers. If 〈d1 . . . dk〉 is
a path abstraction then 〈D1 . . . Dk〉, where Di = ∆(di), is an execution path.
We will also sometimes writeM(〈d1 . . . dk〉) meaningM(〈∆(d1) . . . ∆(dk)〉).
�

3.1.3. Definition. (Models) Let P be a transaction base, andM be a Her-
brand path structure, such thatM |= P, and let σ be a premise statement. We
say that M satisfies σ, denoted M |= σ, iff:

• σ is a run-premise of the form d1
α
 d2 and

M, 〈∆(d1)∆(d2)〉 |= α.

• σ is a state-premise dB f and M, 〈∆(d)〉 |= f .

M is a model of a set of premises S if it satisfies every statement in S. �

3.1.4. Definition. [Entailment] Let P be a T RPAD transaction base, φ a trans-
action formula, and let S be a set of premises. We write

P,S,d1 . . .dn |= φ (3.2)

if and only if for every modelM of P and S, we haveM, 〈∆(d1) . . .∆(dn)〉 |= φ.
�

3.2 Representing Actions with T RPAD

We will now show how T RPAD can be used to represent complex scenarios that
arise in reasoning about actions. We will discuss which conclusions are desired in
each case, but the machinery needed to do the actual reasoning will be developed
in subsequent sections.

3.2.1. Example. [Health Insurance] Consider the US health insurance regula-
tions scenario discussed in the introduction. Suppose we want to formalize the
following regulations:
(i) The AIDS and DNA tests (aids t(T) and dna t(T)), require prior consent of

3.2. Representing Actions with T RPAD 35

the patient (need consent(T)).
(ii) To perform a test T prescribed by doctor D to patient P in compliance
with the law (do cmplnt test(T, P,D)), T must be done (do t(T, P,D)) only after D
prescribed the test T (do presc(D,T)), which in turn must be done after receiv-
ing the consent of P (rcv consent(P, T)).
In T RPAD, this is expressed as follows:
(1) need consent(T)← aids t(T)
(2) need consent(T)← dna t(T)
(3) do cmplnt test(T, P,D)← rcv consent(P, T)⊗ consent(P, T)⊗ do presc(T, P,D)⊗

presc(T, P,D)⊗ do t(T, P,D)
In the rules above, do cmplnt test, rcv consent, do presc and do t are actions, while
need consent, dna t, aids t, consent and presc are fluents. Rules (1) and (2) define
the fluent need consent. They consist exclusively of fluents so they are regular
logic programming rules that do not cause state transitions. Moreover, serial
conjunction of fluents is equivalent to the use of the classical conjunction, since
fluents do not cause state transitions. Rules (1) and (2) formalize regulation (i).
Rule (3) defines the compound action do cmplnt test which formalizes regulation
(ii). The three actions in Rule (3) will be defined in Example 3.2.2. They are
partially defined actions, which we will define in the following chapter. Note
that compound actions like do cmplnt test cannot be expressed in action languages
like [35, 8, 38].

The next statement is an update transaction, where wb, s, and m are con-
stants.

?- aids t(wb)⊗ do cmplnt test(wb,m, s)⊗ negative(m,wb)

It first queries the database to check if Western Blot (wb) is an aids test. If
it is, the transaction executes the compound action do cmplnt test to perform a
complaint test wb for the patient Mark (m) prescribed by Dr. Smith (s). If
the test finishes successfully, the transaction checks that the result is negative
and all is well. Note that if after executing do cmplnt test the transaction fails,
for example because Mark’s consent was not received, actions are “backtracked
over,” and the underlying database state remains unchanged. �

3.2.2. Example. [Health Insurance, continued] Consider Example 3.2.1, and
let us now present the three PADs that were left undefined. We also add the
fluents dr , matching , and finished .

P =

neg finished(P, T)⊗ neg matching(P, T)⊗ do t(T, P,D)→

do t(T, P,D)⊗ finished(P, T)⊗ negative(P, T)
patient(P)⊗ need consent(T)⊗ rcv consent(P, T)→

rcv consent(P, T)⊗ consent(P, T)
dr(D)⊗ do presc(T, P,D)→ do presc(T, P,D)⊗ presc(D,P, T)

The first PAD states that the result of the test is negative if the test is still in

36 Chapter 3. Transaction Logic With Partially Defined Actions

process (i.e., not finished) and there is no match with the patient’s sample. The
second and third rules define the actions rcv consent and do presc. Suppose that
Mark (m) got a PCR DNA test (pr) prescribed by Doctor Smith (s); and we
know that the result of the test did not match the sample and the test finished
successfully. The premises for the problem at hand are as follows:

S =

d1
rcv consent(m,pr)

 d2 − m’s consent is received at d1,
which leads to d2

d2
do presc(m,pr,s)

 d3 − The prescription is received at d2

leading to d3

d3
do t(m,pr,s)
 d4 − m’s test is made at state d3

and it results in d4

d1 B neg finished(m, pr) − The test is not finished at state d1

d1 B dna t(pr) − PCR is a DNA test
d1 B patient(m) − Mark is a patient
d1 B dr(s) − Smith is a doctor
d3 B neg matching(m, pr) − There is no match with m’s sample
d4 B finished(m, pr) − The test was performed successfully

We would like the logic to infer that the result of the compliant PCR test for
Mark was negative. That is,

P,S,d1--- |= do cmplnt test(pr,m,s)⊗ negative(m, pr)

�

Let us now consider a popular example in action languages, called the Turkey
Hunting Problem, which is used in [35, 8, 38] among others.

3.2.3. Example. [The Turkey Shoot Problem [39]] A pilgrim goes turkey-hunting.
If he fires a loaded gun, the turkey is dead in the next state. The turkey can
die only by being shot. Assuming that the turkey is alive initially and dead
afterwards, we want to be able to infer that the gun was loaded initially. For
this problem, the fluents are loaded and alive, and the actions are load and shoot.
The set of premises is:

S =

d1

shoot
 d2

d1 B alive

d2 B neg alive

The PADs for the above problem are as follows:

load → load⊗ loaded

loaded ⊗ shoot → shoot⊗ neg alive

shoot → shoot⊗ neg loaded

3.2. Representing Actions with T RPAD 37

The above premises state that a shooting action has occurred at some state
D1 (= ∆(d1)) , that the turkey was alive then, and that it was not alive after the
action. The PADs describe the effects of loading and shooting. Our requirement
is that the logic be strong enough to prove that the gun was loaded initially:

P,d1 |= loaded

In general, there is not enough information to prove that in all models where
shoot makes a transition from D1 to D2 (= ∆(d2)), the following is impossible:

D1 = {neg loaded , alive} D2 = {neg loaded ,neg alive}

However, common sense reasoners, due to the inertia law, would normally reject
transitions from such D1 to D2 because the fluent alive changes without a cause.
�

To solve the problem highlighted in the above example, we need to be able
to state the so-called commonsense law of inertia (or frame axioms), which says
that things stay the same unless there is an explicitly stated cause for a change.
However, the following example shows that there are situations where assuming
that things change only due to a direct effect of an action (and remain the same
otherwise) is inappropriate.

3.2.4. Example. [The Turkey Shoot Problem #2] Consider Example 3.2.3 with
the following additional features:

• the gun can be loaded only if the pilgrim has bullets

• the pilgrim can only hunt during the day and

• In the third state the night falls

To represent this, we introduce two new fluents, daylight and bullets, and the
following premises:

S =

d1
shoot
 d2

d2
load
 d3

d1 B daylight

d1 B alive

d2 B neg alive

d3 B neg loaded

d3 B neg daylight

The PADs for the above problem are as follows:

bullets ⊗ load → load⊗ loaded

daylight ∧ loaded ⊗ shoot → shoot⊗ neg alive

shoot → shoot⊗ neg loaded

38 Chapter 3. Transaction Logic With Partially Defined Actions

These premises state that a shooting occurs at some state represented by d1

and then a load action at d2. Also, initially the turkey was alive and there was
daylight, but following the shooting, the turkey was not alive. After shooting
and loading took place, the gun was found to be unloaded, and it was dark
outside. The PADs describe the effects of the loading and shooting actions We
want our logic to conclude that the gun was loaded initially and after shooting
the pilgrim must have run out of bullets:

P,d1 |= loaded

P,d2 |= neg bullets

A subtle point here is that daylight is not a direct effect of an action, so a
simplistic law of inertia would conclude

P,d2 |= neg daylight and P,d1 |= neg daylight

Clearly, this is not what we want in this case. �

3.2.5. Example. [The Turkey Shoot Problem #3] Consider again the scenario
described in Example 3.2.3. Assuming that the gun is unloaded initially and
the turkey is dead afterwards, we want to be able to infer that the turkey was
not alive initially. We keep the same set of fluents and actions as in Example
3.2.3, and the premises are

S =

d1

shoot
 d2

d1 B neg loaded

d2 B neg alive

The above states that a shooting action has occurred at some state d1, that the
gun was not loaded initially, and that the turkey was not alive after shooting.
The PADs describe the effects of loading and shooting. Our requirement is that
the logic be strong enough to prove that the turkey was not alive initially:

P,d1 |= neg alive

�

The following example illustrates the use of complex actions.

3.2.6. Example. [The Turkey Shoot Problem #4] Again we take Example 3.2.3
as a point of departure. We extend the set of fluents with hidden and bird in range

and add the actions find location, hunt and hide. The action hunt is a complex action
composed of several partially defined actions and fluents. The pilgrim can hunt
if he finds a good spot to shoot, manages to hide, the gun is loaded, and when
he shoots he kills the turkey. The set of premises is:

3.2. Representing Actions with T RPAD 39

S =

d1
find location
 d2

d2
hide
 d3

d3
shoot
 d4

d5
shoot
 d4

d3 B loaded

d2 B alive

d4 B neg alive

The above premises state that shooting in state d3 or d5 leads to d4, hiding in
state d2 leads to d3, and finding a location in d1 brings in state d2. We also
know that the gun was loaded in d3, and that the turkey was not alive in d4,
but it was alive in d2. (The index number should not be construed as implying
a temporal order among the states d1, ..., d5.)

The PADs for the above problem describe the effects of loading, shooting,
etc. They are as follows:

load → load⊗ loaded

loaded ⊗ shoot → shoot⊗ neg alive

shoot → shoot⊗ neg loaded

hide → hide⊗ hidden

find location → find location⊗ bird in range

The rules for the complex actions and derived fluents in the transaction base are
shown below. The first rule defines a fluent, correct location, and the second
defines the complex action hunt.

correct location← hidden ⊗ bird in range

hunt← find location⊗ hide⊗ correct location ⊗ loaded ⊗ shoot

Our requirement is that the logic must be strong enough to prove that the turkey
was not alive after executing hunt in d1:

P,d1--- |= hunt⊗ neg alive �

Examples 3.2.3, 3.2.4,3.2.5, and 3.2.6 illustrate the need for additional ax-
ioms to express the common-sense inertia laws.

It is worth noting that the problem described in Examples 3.2.2, 3.2.3, 3.2.4,
etc., cannot be expressed in the action language previously cited. For instance,
the action language A [35], does not allow defined fluents, and neither A nor
AL nor AC [35, 8, 38] support compound actions.

Note that in all previous examples we were using a restricted type of PADs
of the form b1 ⊗ α → α ⊗ b2. This restricted form is sufficient for most types

40 Chapter 3. Transaction Logic With Partially Defined Actions

of action specification, but inertia and related laws require a more general kind.
For example, a rule suitable for expressing the inertia needed in Example 3.2.3
is

neg loaded ⊗ shoot⊗ neg alive → neg alive ⊗ shoot

It says that if shooting with an unloaded gun puts us in a state where the turkey
is dead, the turkey must have been dead beforehand.

3.3 A Proof Theory for T RPAD

This section develops an inference system for proving statements about transac-
tion execution. These statements, called sequents have the form P,S,d--- `
φ, where φ is a serial-Horn goal and (P,S) a T RPAD specification. Informally,
such a sequent says that transaction φ can successfully execute starting at state
d. We refer to the inference system developed here as F ; it significantly gener-
alizes the inference system FH for the serial-Horn fragment of T R – presented
in [11].

3.3.1. Definition. [Inference System F] Let P be a transaction base and S
a set of premises. The inference system F consists of the following axioms and
inference rules, where d, d1, d2, ... denote arbitrary database states.
Axioms:

1. No-op: P,S,d ` ()

Inference rules: In the rules below, a, and α are literals, and φ, ψ, and bi
(i = 1, . . . , 4) are serial goals.

1. A subset of Horn inference rules from [11, 12]:

(a) Applying transaction definitions:

a← φ ∈ P
P,S,d1 . . .dn ` φ⊗ ψ
P,S,d1 . . .dn ` a⊗ ψ

(b) Hypothetical operations:

P,S,d,d′1, ...,d′n ` β
P,S,d,d1, ...,dm ` γ

P,d,d1, ...,dm ` ♦β ⊗ γ

2. Premise rules: For each premise in S:

d1
α
 d2 ∈ S

P,S,d1d2 ` α
dB f ∈ S
P,S,d ` f

3.4. Axioms of Inertia and Action Theory 41

3. Forward Projection: Suppose α is a partially defined action. Then

b1 ⊗ α⊗ b2 → b3 ⊗ α⊗ b4 ∈ P
P,S,d1 ` b1
P,S,d2 ` b2

P,S,d1d2 ` α
P,S,d1 ` b3 and P,S,d2 ` b4

4. Sequencing:
P,S,d1 . . .di ` φ
P,S,di . . .dn ` ψ
where 1 ≤ i ≤ n

P,S,d1 . . .dn ` φ⊗ ψ

5. Decomposition: Suppose φ and ψ are serial conjunctions of literals and
hypotheticals. Then

P,S,d ` φ⊗ ψ
P,S,d ` φ and P,S,d ` ψ

The next theorem relates the inference system F to the model-theory.

3.3.2. Theorem (Soundness and completeness). For any serial goal φ and
a T RPAD specification (P,S), the executional entailment P,S,d1 . . .dn |= φ
holds if and only if there is a deduction in F of the sequent P,S,d1 . . .dn ` φ

1. Proof. See Appendix A. �

3.4 Axioms of Inertia and Action Theory

We now return to the problem of inertia discussed in Examples 3.2.3, 3.2.4,
and 3.2.5. Given a T RPAD transaction base P, we augment it with suitable
frame axioms and construct a specification A(P), called the action theory of
P, where P ⊆ A(P). For simplicity we present a ground version of the frame
axioms. Lifting to the non-ground case is done in a standard way (cf. [11]).

For this specification to be well-defined, we impose a restriction over inter-
loping PADs—defined below. Observe that we do not impose this restriction
on T RPAD itself—only on the particular action theory presented in this section.
For instance, the inference system and the reduction to logic programming given
in Section 3.6 do not rely on this assumption. Some other action languages (e.g.,
the A-language of [35]) impose the same restriction. To capture the inertia laws
in T RPAD without the restriction over interloping PADs, one needs a more elab-
orate theory, to be presented in Section 3.7. In Section 3.8 we show how to
remove the restriction over interloping PADs.

42 Chapter 3. Transaction Logic With Partially Defined Actions

Two PADs same action α are said to be interloping if they share a common
primitive effect. For instance, the following PADs are interloping, as they share
a fluent (loaded):

− has bullets ⊗ load→ load⊗ loaded

− has ammunition ⊗ load→ load⊗ (loaded ∧ ready)

In this section, we will assume that T RPAD transaction bases do not contain
interloping PADs. Recall that we will be combining several formulas into one
using the usual De Morgan’s laws. In addition, recall that explicit negation
connective neg is distributive with respect to conjunctions of fluent literals
(serial and classical, which are equivalent for fluents) the same way as negation
distributes through the regular classical conjunction according to Morgan’s laws.
For instance, the PAD

neg (f1 ∧ f2) ∧ neg (f3 ∧ f4)⊗ α→ g

is equivalent to

(neg f1 ∨ neg f2) ∧ (neg f3 ∨ neg f4)⊗ α→ g

which in turn is equivalent to

(neg f1 ∧ neg f3)⊗ α→ g
(neg f1 ∧ neg f4)⊗ α→ g
(neg f2 ∧ neg f3)⊗ α→ g
(neg f2 ∧ neg f4)⊗ α→ g

As explained in Example 3.2.3, it is a requirement that the frame axioms
must be able to model a variety of different behaviors, depending on the problem
at hand. In the following we define a general set of rules, Frame(P), that
encodes different aspects of the Frame Axioms, and at the end of this section
we prove that this set of rules behave as expected. For instance, in Example
3.2.4 we expect that some fluents, like alive, are subject to the frame axioms,
while others, like daylight, are not. We thus introduce a predicate, inertial,
that indicates whether a fluent is subject to inertia.2 If a fluent, f , behaves
according to the frame axioms in state D (= ∆(d)), it is assumed that S has a
state-premise of the form dB inertial(f).

The action theory A(P) for a transaction base P is defined as P∪Frame(P),
where Frame(P) is the following set of axioms:

2 In some cases, we can also specify inertial via rules and facts. For instance, if every fluent
is inertial, we could just have a universal fact inertial(F).

3.4. Axioms of Inertia and Action Theory 43

Forward Inertia For each base fluent literal h and each partially defined action
α such that neither h nor neg h is a primitive effect of α, the following
axiom is in Frame(P):

(inertial(h) ∧ h)⊗ α→ α⊗ h (3.3)

Figure 3.3: Forward Inertia

Here it is worth noting that the number of the Forward Inertia axioms
are quadratic, i.e., it is proportional to the number of fluents times the
number of actions. However, it is easy to replace all these axioms with
just one if we use HiLog [21] and thus gain the ability to quantify over
propositions. In that case, we could replace the above axiom schema with
a single axiom of the form

(unrelated(H,Action) ∧ inertial(H) ∧H)⊗Action
→ Action⊗H

where H and Action are variables and unrelated is a predicate that pro-
vides information on which fluents are independent of which actions.

Forward and Backward Disablement Let g or neg g be base literals and α
a pda. Since we do not have interloping actions, there can be at most one
partially defined action pg with the primitive effect g and at most one pda
pneg g with the primitive effect neg g. Let fg be the precondition of pg and
fneg g the precondition of pneg g (if pg or pneg g does not exist, assume that
neg fg or neg fneg g is true in every state). Then the following forward
disablement axioms are in Frame(P):

(inertial(g) ∧ neg fg ∧ neg fneg g)⊗ g ⊗ α → α⊗ g
(inertial(g) ∧ neg fg ∧ neg fneg g)⊗ neg g ⊗ α → α⊗ neg g

(3.4)

44 Chapter 3. Transaction Logic With Partially Defined Actions

Figure 3.4: Forward Disablement

If g is a base fluent,3 then the following backward disablement axioms are
also in Frame(P):

(inertial(g) ∧ neg fg ∧ neg fneg g)⊗ α⊗ g → g ⊗ α
(inertial(g) ∧ neg fg ∧ neg fneg g)⊗ α⊗ neg g → neg g ⊗ α (3.5)

In other words, if the pdas pg and pneg g are disabled in some state then
executing α in that state does not change the truth value of the fluents g
and neg g.

Figure 3.5: Backward Disablement

Backward Inertia For each pda α such that f is a base fluent which is not
primitive effect of α:

inertial(f)⊗ α⊗ f → f ⊗ α ∈ Frame(P) (3.6)

3Recall that base fluents are the fluents which are not defined by Horn-rules.

3.4. Axioms of Inertia and Action Theory 45

Figure 3.6: Backward Inertia

Causality For each PAD b1 ⊗ α → α ⊗ b2 ∈ P, and each base primitive effect
b′ that occurs as one of the conjuncts in b2:

neg b′ ⊗ α⊗ b′ → b1 ⊗ α ∈ Frame(P) (3.7)

That is, if an effect of an action has been observed, the action must have
been executed as prescribed by the unique (since there are no interloping
PADs) PAD that specifies that effect. In particular, the precondition of
that PAD must have been true.

Figure 3.7: Causality

Backward Projection For each PAD in P of the form (∧ki=1b
i
1)⊗α→ α⊗b4,

and each base primitive precondition bj1

(∧ki=1,i 6=jb
i
1)⊗ α⊗ neg b4 → neg bj1 ⊗ α ∈ Frame(P) (3.8)

46 Chapter 3. Transaction Logic With Partially Defined Actions

That is, if all but one primitive preconditions hold, but the effect of the ac-
tion is not observed in the next state, we must conclude that the remaining
precondition was false prior to the execution.

Figure 3.8: Backward Projection

We now return to our examples and show how the above action theory
supports the kinds of reasoning that we desired in Section 3.2. We should point
out one interesting aspect of T RPAD: the fact that the semantics of the logic
and of the above action theory is completely monotonic—quite unlike the other
approaches mentioned earlier. Unless we state it differently, all the fluents in
this sections are inertial.

3.4.1. Example. [Turkey Shoot, continued] The issue in Example 3.2.3 was
the inability to prove P,S,d1 |= loaded (the gun was loaded initially), because
T RPAD was not sufficiently expressive to let us specify the rules of inertia. For-
tunately, the PAD axioms Frame(P) do the trick. Let A(P) be the action
theory of P. We now show how to prove A(P),S,d1 |= loaded using the in-
ference system F . The relevant instance of the axioms in Frame(P) is the
causality axiom:

inertial(alive) ∧ alive ⊗ shoot⊗ neg alive → loaded ⊗ shoot (3.9)

3.4. Axioms of Inertia and Action Theory 47

Now:

A(P),S,d1 ` alive by the inference rule 2 (Premise rule)
A(P),S,d2 ` neg alive by rule 2 (Premise rule)
A(P),S,d1d2 ` shoot by rule 2 (Premise rule)
A(P),S,d1 ` loaded by the inference rule 3 (Forward projection),

the instance (3.9) of the causality axiom
and the above three sequents

The desired conclusion now follows from the soundness of F (Theorem 3.3.2).
�

3.4.2. Example. [Turkey Shoot 2, continued] In Example 3.2.4 we wanted to
prove P,S,d1 |= loaded and P,S,d2 |= neg bullet, i.e., that the gun was loaded
initially, and after shooting the pilgrim runs out of bullets. Furthermore, to
ensure consistency, we should not be concluding P,S,d1 |= neg daylight, i.e.,
that initially it was nighttime.

The proof that A(P),S,d1 |= loaded is the same as in Example 3.2.3. Below
we show how to prove A(P),S,d2 |= neg bullet using the inference system F .
The relevant axiom of Frame(P) is the backward projection axiom:

load⊗ neg loaded → neg bullet ⊗ load (3.10)

Now:

A(P),S,d3 ` neg loaded by the inference rule 2 (Premise rule)
A(P),S,d2,d3 ` load by rule 2 (Premise rule)
A(P),S,d2 ` neg bullet by the inference rule 3 (Forward projection),

the instance (3.10) of the backward projection axiom,
and the two sequents above

The required conclusion now follows from the soundness of F . �

3.4.3. Example. [Turkey Shoot 3, continued] The problem in Example 3.2.5
was to be able to prove P,d1 |= neg alive. We show how to prove A(P),S,d1 |=
neg alive using the inference system F . The relevant instance of the axioms in
Frame(P) is the Backward disablement axiom:

inertial(alive) ∧ neg loaded ⊗ shoot⊗ neg alive → neg alive ⊗ shoot (3.11)

Recall that we assume that S contains the premise d1 B inertial(alive). Next:

A(P),S,d2 ` neg alive by rule 2 (Premise rule)
A(P),S,d1,d2 ` shoot by rule 2 (Premise rule)
A(P),S,d1 ` neg loaded by rule 2 (Premise rule)
A(P),S,d1 ` inertial(alive) by the inference rule 2 (Premise rule)
A(P),S,d1 ` neg alive by the inference rule 3, the instance (3.11) of the

Backward disablement axiom, and the above sequents

48 Chapter 3. Transaction Logic With Partially Defined Actions

The required conclusion now follows from the soundness of F . �

3.4.4. Example. [Turkey Shoot 4, continued] The problem in Example 3.2.6
was to be able to prove

P,d1--- |= hunt⊗ neg alive (3.12)

We show how to prove (3.12) using the inference system F . The relevant
instances of the axioms in Frame(P) are:

inertial(bird in range) ∧ bird in range ⊗ hide→ hide⊗ bird in range (3.13)

Next:

(1) A(P),S,d1,d2 ` find location by rule 2 (Premise rule)
(2) A(P),S,d2 ` bird in range by the inference rule 3 ,

(Forward projection) and
sequent (1)

(3) A(P),S,d2,d3 ` hide by rule 2 (Premise rule)
(4) A(P),S,d3 ` hidden by the inference rule 3 ,

(Forward projection) and
sequent (3)

(5) A(P),S,d2 ` inertial(bird in range) by rule 2 (Premise rule)
(6) A(P),S,d3 ` bird in range by the inference rule 3,

(Forward projection) the
instance (3.13) of the
Forward Inertia
axiom and sequents (2) an (4)

(7) A(P),S,d3 ` hidden⊗ bird in range by the inference rule 4 ,
(Sequencing)
and sequents (4) and (6)

(8) A(P),S,d3 ` correct location by the inference rule 1a ,
(Applying transaction
definitions) and
sequent (7)

(9) A(P),S,d3 ` loaded by rule 2 (Premise rule)

3.4. Axioms of Inertia and Action Theory 49

(10) A(P),S,d3,d4 ` shoot by rule 2 (Premise rule)
(11) A(P),S,d4 ` neg alive by the inference rule 3 ,

(Forward projection),
and sequents (9) and (10)

(12) A(P),S,d1,d2,d3,d4 ` find location⊗ by the inference rule 4
hide⊗ correct location⊗ loaded ⊗ shoot (Sequencing) (4 times)

and sequents (1),(3),(8),
(13) A(P),S,d1,d2,d3,d4 ` hunt (9), and (10), and by

inference rule 1a
(Applying transaction,
definitions) and
sequent (12)

(14) A(P),S,d1,d2,d3,d4 ` hunt⊗ neg alive by the inference rule 4,
(Sequencing),
and sequents (13) and (11)

The required conclusion now follows from the soundness of F and the definition
of entailment in T R. �

3.4.5. Example. [Health Insurance, continued #2] The issue in Example 3.2.2
was to prove P,S,d1--- |= do cmplnt test(pr,m, s)⊗negative(pr,m). We now show
a proof for this statement using the inference system F . We assume that all flu-
ents are inertial in every state. For convenience, we show the relevant instances
of the axioms in Frame(P) here:
(a) inertial(finished(m, pr))⊗ neg finished(m, pr)⊗ rcv consent(m, pr)→

rcv consent(m, pr)⊗neg finished(m, pr) (ForwardInertia)
(b) inertial(dr(s))⊗dr(s)⊗rcv consent(m, pr)→ rcv consent(m, pr)⊗dr(s) (ForwardInertia)
The derivation is shown below:

(1) A(P),S,d1 ` patient(m)⊗ by the inference rule Premise,
need consent(pr) App. tran. def.

and Sequencing
(2) A(P),S,d1d2 ` rcv consent(m, pr)⊗ by the rule Premise, sequent (1),

⊗consent(m, pr) Forward Projection,
and Sequencing

(3) A(P),S,d2 ` dr(s) by rule Premise and Forward
projection, using
instance (b) of the Unrelateness
axiom

50 Chapter 3. Transaction Logic With Partially Defined Actions

(4) A(P),S,d2d3 ` do presc(pr,m, s)⊗ by sequent (3), rules Forward
presc(pr,m, s) Projection and Sequencing

(5) A(P),S,d3 ` neg finished(m, pr) by rule Premise, Forward,
neg matching(m, pr) Projection and instance (a) of

Unrelateness axiom
(6) A(P),S,d3,d4 ` ⊗do t(pr,m, s) by the above sequent (5) and

⊗negative(pr,m) rule Premise, Forward
Projection, and Sequencing

(7) A(P),S,d1,d2,d3,d4 ` by the rule Applying Transaction
do cmplnt test(pr,m, s)⊗ negative(pr,m) Definitions and

the sequents (2),(4),(6)

The required conclusion now follows from the soundness of F and the defi-
nition of entailment in T R . �

In the rest of this section we will show that T RPAD generalizes Horn-T R –.
This implies that the frame axioms in the action theory behave as expected in
the relational case. That is, they correctly model the inertia laws behind Horn-
T R –. Furthermore, the results in Chapter 4 guarantee that the frame axioms
introduced above are correct.

First we define a T RPAD specification that corresponds to a serial-Horn pro-
gram P with the initial database D, which we will denote by (P,D).

3.4.6. Definition. [Relational specifications for serial-Horn programs] A T RPAD

specification (Q,S)d0 is a relational specification of a serial-Horn program
(P,D) if and only if:

Initial State for every ground base fluent-literal f such that f ∈ D, (Q,S)d0

has these premise formulas:

d0 B f
d0 B inertial(f)

Transaction Base

Q = P
∪ {insert(f)→ insert(f)⊗ f |

for every ground base fluent-literal f}
∪ {delete(f)→ delete(f)⊗ neg f |

for every ground base fluent-literal f}

Plus the action theory of Q.

3.4. Axioms of Inertia and Action Theory 51

Transitions for every elementary action α, and sequence r of elementary ac-
tion, S contains run-premises of the form:

d0,r
α
 d0,r,α

In addition, we assume that every ground base fluent is inertial in every
state.

3.4.7. Definition. [Correspondence of states] Let (P,S) be a T RPAD speci-
fication. Given a state identifier d in LT RPAD , let D(d) denote the following set
of database fluents in the language LT R – of Transaction Logic:

D(d) = {f | f is a ground base fluent-term such thatP,S,d |= f}

�

3.4.8. Proposition (State consistency and completeness). Let (P,D)
be a Horn-T R – program and (Q,S)d be a relational specification of (P,D). Let
α be an action and d1,d2 be state identifiers such that Q,S,d1 . . .dn |= α. If
D(d1) is consistent then so is D(dn). If, in addition, D(d1) is complete then
so is D(dn).

2. Proof. See Appendix B. �

3.4.9. Theorem (Soundness). Let P be a Horn-T R – transaction base and
D a database state. Let (Q,S)d0 be a relational specification of (P,D) and h a
serial goal. Suppose that Q,S,d0 . . .dn |= h. Then there are relational database
states D1, . . . , Dn−1 (in LT R) such that

P,D,D1 . . .Dn−1,D(dn) |= h

where D(dn) is as in Definition 3.4.7.

3. Proof. See Appendix B. �

3.4.10. Theorem (Completeness). Let P be a Horn-T R – transaction base
and D a database state. Let (Q,S)d0 be a relational specification of (P,D), and
h a serial goal. Suppose that P,D, . . .Dn |= h. Then there are state identifiers
d1 . . .dn such that Q,S,d0 . . .dn |= h.

4. Proof. See Appendix B. �

52 Chapter 3. Transaction Logic With Partially Defined Actions

3.5 Reducing Serial-Horn T R – to Logic Program-
ming

Before reducing T RPAD to logic programming, we first tackle a simplified case:
defining a reduction of the serial-Horn subset of T R – to sorted Horn logic
programming and prove its soundness and completeness.

The serial-Horn subset of T R – uses only serial-Horn clauses and relational
data and transition oracles. This means that, in this section, database states
will be collections of T R-fluents, i.e., facts or explicitly negated facts (e.g., like
bird(Tweety) or neg bird(John)) and the elementary update operations are
insert(f) and delete(f), where f is a fluent.

Given a language LT R of Transaction Logic, the corresponding language
LLP of the target logic program is a sorted language with the sorts state,
fluent, action, constant, and an infinite set of variables for each sort. In
addition, we assume that the sort of fluents is contained in the sort of actions
so any fluent-variable is also an action-variable and fluent-terms are allowed
wherever action-terms are. Recall that in Transaction Logic fluents act as
trivial actions that do not change the current state. We will see that the same
holds in the LP reduction.

In addition, we assume that the set of all fluent predicates is partitioned into
base fluents and derived fluents. Base fluents can appear only as facts,
while derived fluents can appear in the heads of rules, but they cannot appear
as facts.

LLP has several distinguished predicates and function symbols, which play
a special role in the reduction. The three distinguished predicates are:

• Hold with the signature fluent× state

• Inertial with the signature fluent× action

• Execute with the signature action× state× state

LLP has no other predicates. The distinguished function symbols are as follows:

• Result with the signature fluent× state→ state

• s0, a constant of sort state

• insert with the signature fluent→ action

• delete with the signature fluent→ action

• neg with the signature fluent→ fluent

• ♦ with the signature action→ action

3.5. Reducing Serial-Horn T R – to Logic Programming 53

• ⊗ with the signature action× action→ action

It is worth noticing that in this section the predicate Inertial is binary, and not
unary as in the previous sections. That is because we specify which fluent is
inertial with respect to which action. Intuitively, the fact Inertial(f, a) should
be understood as “f is not affected by a”. In T RPAD, the dependence of the
inertia of a fluent with respect to an action is built into the action theory.

For convenience, we will write the function symbols neg and ♦ using the
prefix notation and ⊗ using the infix notation.

In addition to the distinguished symbols, the predicate and function symbols
of the language LT R have corresponding function symbols in LLP as explained
next:

• For each n-ary predicate symbol p ∈ Pfluent in LT R, LLP has an n-ary
function symbol p (with the same name) with the signature constant ×
. . .× constant→ fluent.

• For each n-ary predicate symbol p ∈ Paction in LT R, LLP has an n-ary
function symbol p with the signature constant×. . .×constant→ action.

• For each n-ary function symbol f ∈ F in LT R, LLP has an n-ary function
symbol f with the signature constant× . . .× constant→ constant.

The terms that have insert and delete as the outer-most symbols are called
elementary actions. All other terms of sort action are complex actions.

A pair of ground fluents f , g are said to be unrelated if f 6= g and f 6= neg g
(recall that neg neg g = g, by convention). Recall that a base fluent is one that
can occur only in facts.

Next we list the rules that constitute the reduction of serial-Horn Transaction
Logic to logic programming, which we will call LP-reduction. This set of rules
depends on the input transaction base P and the initial database state D, so
this set will be denoted by Γ(P,D).

To avoid repeating the same statements again and again, we will use the
following conventions about variables: S, S1, S2, ... denote state-variables; A,
A1, A2, etc., will be used to denote action-variables; and F , F1, F2, etc., will
stand for fluent-variables. The rules that belong to the reduction Γ(P,D) can
now be formulated as follows:

Initial For each fluent f ∈ D, Γ(P,D) has the fact Holds(f, s0).

Unfolding For each α← β ∈ P, Γ(P,D) has the rule

Execute(α, S1, S2)← Execute(β, S1, S2)

54 Chapter 3. Transaction Logic With Partially Defined Actions

Sequencing Γ(P,D) has the rule

Execute(A1 ⊗A2, S1, S2)← Execute(A1, S1, S), Execute(A2, S, S2)

Hypothetical Execute(♦A,S, S)← Execute(A,S, S1).

Effect+ Holds(F,Result(insert(F), S)).

Effect- Holds(negF,Result(delete(F), S)).

Query For every ground base fluent-term f , Γ(P,D) includes:
Execute(f, S, S)← Holds(f, S)

Frame Axiom Γ(P,D) includes the following rule

Holds(F, S2)← Holds(F, S1), Execute(A,S1, S2), Inertial(F,A)

Inertial For each pair of unrelated base fluent-terms f and g:

Inertial(f, insert(g))
Inertial(f, delete(g))
Inertial(f,♦A)
Inertial(F,A1 ⊗A2)← Inertial(F,A1), Inertial(F,A2)

Execution Execute(α, S,Result(α, S)) for each elementary action α.

It is easy to see from the above that, for any serial-Horn transaction base
P, the reduction Γ(P,D) is a regular Horn logic program. By the well-known
result from [78], it has a unique least Herbrand model, which can be computed
via a repeated exhaustive application of the rules in Γ(P,D).

3.5.1. Definition. [Consistency and completeness of state-terms] Let Γ(P,D)
be the LP reduction of a serial-Horn T R program (P,D) and let s be a ground
state-term. We say that s is complete if and only if for any ground base
fluent-term f

Γ(P,D) |= Holds(f, s) or Γ(P,D) |= Holds(neg f, s)

We will say that s is consistent if and only if there is no ground base fluent-
term f such that both of the following hold:

Γ(P,D) |= Holds(f, s) and Γ(P,D) |= Holds(neg f, s)

�

We will now establish a number of properties of the LP-reduction.

3.6. Reducing T RPAD
D to Logic Programming 55

3.5.2. Proposition (State consistency and completeness). Let Γ(P,D)
be an LP-reduction of a relational serial-Horn Transaction Logic program (P,D).
Let s and ŝ be ground state-terms such that Γ(P,D) |= Execute(α, ŝ, s) holds,
where α is a ground action-term. If ŝ is consistent then so is s. If, in addition,
ŝ is complete then s is also complete.

5. Proof. See Chapter C.

3.5.3. Definition. [Correspondence between states in LLP and LT R] Given
a ground state-term t in LLP , let D(t) denote the following set of database
fluents in the language LT R of Transaction Logic:

D(t) = {f | f is a ground base fluent-term such that Γ(P,D) |= Holds(f, t)} �

3.5.4. Theorem (Soundness). Let Γ(P,D) be an LP-reduction of a relational
serial-Horn T R program (P,D) and suppose that Γ(P,D) |= Execute(α, ŝ, s),
where ŝ and s are ground state-terms and ŝ is consistent. Then there exist
relational database states D1, . . . , Dn (in LT R) such that

P,D(ŝ)D1D2 . . .DnD(s) |= α

where D(ŝ) and D(s) are as in Definition 3.5.3.

6. Proof. See Chapter C.

3.5.5. Theorem (Completeness). Let Γ(P,D) be an LP-reduction of a re-
lational serial-Horn T R program (P,D). Suppose P, D̂D1 . . .DnD̄ |= α, where
D̂ = D(ŝ) for some consistent ground state-term ŝ. Then there is a consistent
ground state-term s̄ such that D̄ = D(s̄) and Γ(P,D) |= Execute(α, ŝ, s̄).4

7. Proof. See Chapter C.

3.6 Reducing T RPAD

D
to Logic Programming

In this section we define a reduction for a large fragment of T RPAD, which we
call definite T RPAD, T RPAD

D , to sorted Horn logic programming, and prove its
soundness and completeness. This reduction provides an easy way to implement
and experiment with the formalism.

The only difference between T RPAD
D and T RPAD is that T RPAD

D allows neither
non-deterministic nor converging premises run-premises and it requires the set
of premises to be well-founded. These notions are defined next.

4 D(ŝ) and D(s̄) were introduced in Definition 3.5.3.

56 Chapter 3. Transaction Logic With Partially Defined Actions

A set of run-premises is converging if it has a pair of run-premises that
shares the same final state. For instance,

d1
shoot
 d2

d3
load
 d2

Two run-premises for the same partially defined action, α, are non-deter-
ministic if they have the same initial state but different final states. For in-
stance the following run-premises are non-deterministic:

d
α
 d1

d
α
 d2

We should note that the restriction about determinism of the premises con-
cerns pdas only: complex actions defined by serial-Horn rules can be non-
deterministic, and T RPAD

D can represent and deal with them.

We say that a set of premises S is well-founded if S does not have an
infinite chain of run-premises of the form d1

α0 d0, d2
α1 d1, d3

α2 d2, . . .,
for any states d0, d1, d2, . . . and pdas α0, α1, α2, As a special case, this
precludes circular run-premises. For instance, the set of premises that has the
following run-premises is not well-founded:

d1
α
 d2 d2

β
 d1

As in Section 3.5, all states in T RPAD
D are relational, i.e., collections of flu-

ents. Given a language LT R of T RPAD
D , the target language LLP for the logic

programing reduction of T RPAD
D is defined as in Section 3.5 except for the set

of constants. Recall that the language of the reduct has three distinguished
predicate symbols Holds, Inertial, and Execute; and the distinguished func-
tion symbols Result, ⊗, ♦, and neg . Section 3.5 had a single state-constant
s0, but now we will have a unique state-constant sd for each database state d.

Recall that intuitively, the atom Holds(f, s) means that the fluent f holds
in state s, and Execute(α, s1, s2) means that executing α in s1 leads to state
s2. The intuition behind neg , ♦, ⊗ should be clear at this point: they en-
code negated literals, hypotheticals, and sequencing of actions. The state-term
Result(α, s) represents the state resulting from executing α in the state s.

The set of LP axioms that constitute the reduction depends on the input
transaction base P as well as on the set of premises S. We denote this reduction
by Γ(P,S).

As in Section 3.5, we use the following conventions: S, S1, S2, and so on, de-
note state-variables; the symbols A, A1, A2, etc., are used for action-variables;
and F , F1, F2, etc., represent fluent-variables.

3.6. Reducing T RPAD
D to Logic Programming 57

Note that in the PADs the pre- and post-conditions are conjunctions of
fluents, and occasionally we will need Boolean combinations of fluents. In these
cases, we will be sometimes using the usual De Morgan’s laws, such as neg (f ∧
g) = neg f ∨neg g, and we postulate that ∨ and ∧ are distributive with respect
to Holds. For example,

Holds(f1 ∧ f2, s) ≡ Holds(f1, S) ∧Holds(fn, S)
Holds(f1 ∨ f2, s) ≡ Holds(f1, S) ∨Holds(f2, S)
Holds(neg (f1 ∧ f2), s) ≡ Holds(neg f1, S) ∨

Holds(fneg 2, S)
Holds(neg (f1 ∨ f2), s) ≡ Holds(neg f1, S) ∧

Holds(fneg 2, S)

The reduction Γ(P,S) of a T RPAD
D specification (P,S) is defined by the following

set of rules and facts. First we define db2stS , as a correspondence between
database states and state-terms, as follows:

• db2stS(d) = sd, if d occurs in a run- or state-premise in S and S has no

run-premise of the form d0
α
 d, for some state d0. Here sd is the unique

LLP state constant that corresponds to the T RPAD
D state identifier d and

α is a pda.

• db2stS(d) = Result(α, s), if S has a run-premise of the form d0
α
 d, and

db2stS(d0) = s.

It is worth noticing that this definition is well-formed, because S is a well-
founded set of premises.

Premises The following facts are added to Γ(P,S) for each premise in S.

• For each state-premise dB f ∈ S and any state s = db2stS(d):

Holds(f, s) ∈ Γ(P,S)

• For each run-premise d1
α
 d2 ∈ S and any state s = db2stS(d1):

Execute(α, s,Result(α, s)) ∈ Γ(P,S)

No-op For each database D such that db2stS(D) is non empty, and for any
state s = db2stS(D)5

Holds((), s) ∈ Γ(P,S)

5 Recall that () is an empty conjunction of fluents.

58 Chapter 3. Transaction Logic With Partially Defined Actions

Unfolding For each α← β ∈ P, Γ(P,S) has the rule

Execute(α, S1, S2)← Execute(β, S1, S2)

Sequencing Γ(P,S) has the rule

Execute(A1 ⊗A2, S1, S2)← Execute(A1, S1, S),
Execute(A2, S, S2)

Decomposition For every conjunction of fluent-terms and hypothetical serial-
conjunction g and each conjunct h in g, Γ(P,S) includes the following rule:

Execute(h, S, S)← Execute(g, S, S)

Hypothetical Execute(♦A,S, S)← Execute(A,S, S1).

Query If f is a ground base fluent-term or the empty conjunction (), then
Γ(P,S) includes

Execute(f, S, S)← Holds(f, S)

Forward Projection For each PAD b1 ⊗ α⊗ b2 → b3 ⊗ α⊗ b4 ∈ P, Γ(P,S)
has the rules:

Holds(b3, S) ← Execute(b1, S, S), Execute(α, S,Result(α, S)),
Execute(b2, Result(α, S), Result(α, S))

Holds(b4, Result(α, S)) ← Execute(b1, S, S), Execute(α, S,Result(α, S)),
Execute(b2, Result(α, S), Result(α, S))

Observe that, since b1, b2, b3, and b4 might be conjunctions of literals,
application of De Morgan’s laws to these rules may result in conjunctions
in the rule heads and disjunctions in the body. However, such rules reduce
to regular Horn rules.

Observe that Γ(P,S) contains one kind of LP rule for each inference rule/axiom
in F6 plus one extra rule that interprets fluents as trivial actions that do not
change states.

It follows directly from the construction of Γ(P,S) that it is equivalent to
a set of Horn rules for any T RPAD

D transaction base P. Therefore, it has a
unique least Herbrand model, which can be computed via a repeated exhaustive
application of the rules in Γ(P,S) in a bottom-up fashion.

6 Forward Projection in Γ(P,S) consists of two kinds of rules, one for the post-condition,
and one for the pre-effect.

3.6. Reducing T RPAD
D to Logic Programming 59

3.6.1. Definition. [Correspondence between sets of fluents in LLP and LT RPAD]
Given a ground state-term s in LLP , we define D(s) to be the following set of
database fluents in the language LT RPAD of Transaction Logic:

{f | f is a ground fluent-term such that Γ(P,S) |= Holds(f, s)}

�

The soundness theorem uses the following partial function from state-terms
to database states. It relies on the fact that S has no non-deterministic run-
premises in T RPAD

D and that it is well-founded. Let st2db be the partial function
defined as follows

3.6.2. Definition. Let Γ(P,S) be an LP-reduction of a relational T RPAD
D

specification (P,S). We define a partial function st2db from state-terms to
database state identifiers as follows:

• st2db(sd) = d, if d occurs in a run- or state-premise in S and S has no

run-premise of the form d0
α
 d for some d0. If d does not occur in any

run- or state-premise in S, then st2db(sd) is undefined.
Here sd is the unique state constant that corresponds to the database state
d and α is a pda.

• st2db(Result(α, s)) = d, if st2db(s) exists and

db2st(s)
α
 d ∈ S. Otherwise, st2db(Result(α, s)) is undefined. �

st2db(s) is uniquely defined and thus well-formed because S is well-founded
and has no non-deterministic run-premises.

3.6.3. Theorem (Soundness). Let Γ(P,S) be an LP-reduction of a T RPAD
D

program (P,S). Suppose Γ(P,S) |= Execute(α, s1, s2), where s1 and s2 are
ground state-terms and α an action. Then there are relational database states
d1, . . . ,d2 in LT R such that the following holds:

(1) P,S,d1 . . .d2 |= α (2) d1 = st2db(s1), d2 = st2db(s2)
(3) P,S,d1 |= D(s1) (4) P,S,d2 |= D(s2)

where D(s) denotes the set of all database fluents f in the language LT RPAD,
such that Γ(P,S) |= Holds(f, s).

8. Proof. See Appendix D. �

3.6.4. Theorem (Completeness). Let Γ(P,S) be an LP reduction of a T RPAD
D

specification (P,S). Suppose that P,S,d1 . . .dn |= φ. Then the following holds:
– If n = 1, and there is a state-term s1 such that db2stS(d1) = s1, then φ is
a conjunction of fluents and hypotheticals and:

60 Chapter 3. Transaction Logic With Partially Defined Actions

Γ(P,S) |= Execute(φ, s1, s1)
– If n > 1, and there are ground state-terms s1, s2 such that db2stS(d1) = s1

and db2stS(dn) = s2, then:
Γ(P,S) |= Execute(φ, s1, s2)

9. Proof. See Appendix D. �

In plain English, together these theorems say that every execution of an
action in Γ(P,S) has a similar execution in T RPAD

D , and vice versa.

3.7 T RPAD with Default Negation

In this section, we extend T RPAD with default negation (a.k.a. negation as
failure). Default negation has become a central ingredient in the design of logic
programming languages, databases [77, 37], truth maintenance system [47], etc.
Default negation allows a logic system to conclude the negation of any atom
that the system unsuccessfully finishes exploring all possible proofs. That is, if
we fail to prove that a fact is true, by default, we assume it is false.

The syntax of T RPAD with default negation is as in T RPAD (c.f. Section
3.1). As before, the symbol neg will be used to represent the explicit negation,
but now we allow also the symbol not to represent default negation. These two
symbols are applicable to fluents only. A fluent literal is either an atomic fluent
or it has one of the following negated forms:

neg f, not f, not neg f

where f is an atomic fluent. Literals that do not mention not are said to be
not -free. We allow not -literals to occur only as a conjunct in the pre/post-
conditions of PADs and in the body of Horn rules. That is, effects and pre-effects
of PADs, the head of Horn rules, and premises are not -free.

Observe that it is not necessary the case that explicit negation implies default
negation. Therefore one should not use explicit negation as if this implication
held. For instance, suppose we have the following transaction base:

sunny ← not rainy
rainy ← not sunny

If one assumes that explicit negation implies default negation, we could have a
database where neg sunny holds, and expect to infer that rainy is true in such
state. However, in our formalism, sunny and rainy will be undefined under
the well-founded semantics. This limitation in our approach does not produce
‘wrong’ answers, but it is a cautious approach, that is, not expressive enough to
cover some cases, such as the example above.

3.7. T RPAD with Default Negation 61

In this section, for the sake of clarity, we split the transaction base in two:
the transaction base and the action base. In the transaction base we leave
only the serial-Horn rules. The T RPAD action base, contains the set of PADs.
A T RPAD specification is a tuple (E ,P,S) where E is a T RPAD action base, P
is a T RPAD transaction base, and S is a set of premises.

Semantics.

This semantics uses three truth values, u, t and f, which stand for true, false,
and undefined and are ordered as follows: f < u < t. In addition, we will use
the following operator ∼: ∼ t = f, ∼ f = t, ∼ u = u.

A database state D (or just a state, for short) is a set of ground (i.e.,
variable-free) fluent literals.

The semantics is based on the notion of path structures.

3.7.1. Definition. [Three-valued Partial Herbrand Interpretation] A partial
Herbrand interpretation is a mapping H : B 7→ {f,u, t} that assigns a truth
value, f,u, or t, to every formula φ in B. �

Recall that a central feature in the semantics of T R is the notion of execution
paths, since T R formulas are evaluated over paths and not over states like in
temporal logics.

3.7.2. Definition. [Three-valued Herbrand Path Structure] A Herbrand path
structure is a mapping I that assigns a partial Herbrand interpretation to every
path. That is, for any path π, I(π) is an interpretation. So, for instance, I(π)(f)
is a truth value for any literal f . This mapping must satisfy the restriction that
for each ground base fluent f and database state D:

I(〈D〉)(f) = t if f ∈ D and I(〈D〉)(neg f) = t if neg f ∈ D

where 〈D〉 is a path that contains only one state, D.

In addition, I includes a mapping of the form:
∆I : State identifiers −→ Database states

which associates states to state identifiers. We will usually omit the subscript.
�

In the remainder of this section we will consider ground rules and PADs
only. We can make this assumption without loosing generality because all the
variables in a rule are considered to be universally quantified. In addition, we
assume that the language includes the distinguished propositional constants tπ,
and uπ for each T R path π. Observe that since there is an infinite number of
paths, there is an infinite number of such constants. Informally, tπ (uπ) is a

62 Chapter 3. Transaction Logic With Partially Defined Actions

proposition that has the truth value t (respectively u) only on the path π, and it
is false on every other path. That is, I(π′)(tπ) = t (respectively I(π′)(uπ) = u)
if and only if π = π′.

The following definition formalizes the idea that truth of T R formulas is
defined on paths. To ease the intuition of this definition, we will explain the
idea behind the satisfaction of a serial conjunction formula of the form φ ⊗ ψ.
A formula φ ⊗ ψ is true in a in a path π, with respect to path structure I if
and only if there is a split π1 ◦ π2 of π such that φ is true in π1 and ψ is true
in φ2 with respect to I. If for every split π1 ◦ π2 of π, φ is false in π1 and ψ is
false in φ2 with respect to I, then φ⊗ ψ is false in a in π. Otherwise, φ⊗ ψ is
undefined in π with respect to path structure I.

3.7.3. Definition. [Satisfaction] Let I be a Herbrand path structure, π be a
path, f a ground not -free literal, and G, G1, G2 ground serial goals. We define
truth valuations with respect to the path structure I as follows:

• I(π)(f) was already defined as part of the definition of Herbrand path
structures.

• I(π)(φ⊗ ψ) = max{min(I(π1)(φ), I(π2)(ψ) | π = π1 ◦ π2}

• I(π)(G1 ∧G2) = min(I(π)(G1), I(π)(G2))

• I(π)(notφ) =∼ I(π)(φ)

• I(π)(�φ) =

{
max{I(π′)(φ) | π′ is a path that starts at D, } if π = 〈D〉

f otherwise

• I(π)(f ← G) = t iff I(π)(f) ≥ I(π)(G)

• I(π)(b1 ⊗ α⊗ b2 → b3 ⊗ α⊗ b4) = t iff π has the form 〈D1,D2〉,
I(〈D1,D2〉)(α) = t, and the following holds:

min{min{I(〈D1〉)(f) | f ∈ b1},min{I(〈D2〉)(f) | f ∈ b2}}
≤

min{min{I(〈D1〉)(f) | f ∈ b3},min{I(〈D2〉)(f) | f ∈ b4}}

We write I, π |= φ and say that φ is satisfied on path π in the path structure
I if I(π)(φ) = t. �

3.7.4. Definition. [Model] A path structure, I, is a model of a formula φ
if I, π |= φ for every path π. In this case we write I |= φ. A path structure, I, is
a model of a set of formulas if it is a model of every formula in the set. A path
structure, I, is a model of a premise-statement σ iff:

• σ is a run-premise of the form d1
α
 d2 and I, 〈d1d2〉 |= α; or

3.7. T RPAD with Default Negation 63

• σ is a state-premise dB f and I, 〈d〉 |= f .

I is a model of a specification (E ,P,S) if I is an interpretation for E and it
satisfies every rule in P and every premise in S. �

3.7.5. Example. Consider our Health Insurance example with the following
additional features:

1. A doctor can do a prescription only the prescription is not inconsistent
with the current regulations.

2. A person who gets a prescription is unhealthy.

3. A person who agrees to get a DNA test is assumed to be healthy.

To represent this we introduce the new fluent inconsistent. The modified PAD
for do presc is as follows:

dr(D)⊗ do presc(T, P,D)⊗ not inconsistent → do presc(T, P,D)⊗ presc(D,P, T)

The features 2 and 3 are encoded by the following rules:

neg healthy(P)← presc(D,P, T)
healthy(P)← dna t(T) ∧ consent(P, T)

Suppose there is an initial state d0 where Mark gave his consent to receive a
PCR-DNA, and Dr. Smith prescribed such test. This is represented by the
premises below:

d0
do presc(m,pr,s)

 d1

d0 B dna t(pr)
d0 B consent(m, pr)

The frame axioms for the problem at hand have the following form:

dna t(P)⊗ do presc(T, P,D)⊗ not neg dna t(P)→
do presc(T, P,D)⊗ dna t(P)

consent(A,B)⊗ do presc(T, P,D)⊗ not neg consent(A,B)→
do presc(T, P,D)⊗ consent(A,B)

Observe that now we modified the frame axioms presented in Section 3.4. Fur-
ther details will be given in Section 3.8.

Now take an interpretation, M1, such that M1(d1)(inconsistent) = f. From
the PADs in E instantiated with s, pr and m, we can conclude that:

M1(d1)(dna t(pr)) = t
M1(d1)(consent(m, pr)) = t
M1(d1)(presc(s,m, pr)) = t

64 Chapter 3. Transaction Logic With Partially Defined Actions

and from the rules in the transaction base it follows thatM1(d1)(healthy(m)) = t
and
M1(d1)(neg healthy(m)) = t. Thus, d1 is inconsistent in M1. �

Recall that in classical logic programming based on three-valued models,
given two Herbrand partial interpretations N1 and N2, we say that

• N1 ≤c N2 iff all not -free literals that are true in N1 are true in N2 and
all not -literals that are true in N1 are true in N2. This coincides with
set-theoretic inclusion and is called the information ordering.

• N1 �c N2 iff all not -free literals that are true in N1 are true in N2 and
all not -literals that are true in N2 are true in N1. This is called the truth
ordering.

3.7.6. Definition. [Order on Path Structures] Let M1 and M2 be two Her-
brand path structures, then:

• Information ordering: M1 ≤M2 if for every path, π, it holds that
M1(π) ≤c M2(π).

• Truth ordering: M1 �M2 if for every path, π, it holds that
M1(π) �c M2(π). �

These two orderings are considerably different. The truth ordering minimize
the amount of truth, by minimizing the atoms that are true and maximizing
the atoms that are false on each path. In contrast, the information ordering
minimizes the amount of information by minimizing both the atoms that are
true and false in each path. For instance, the smallest model with respect to ≤
for the program {α→ α} is one where α is undefined on every path; in contrast,
the least model with respect to � is one when α is false on every path.

3.7.7. Example. Consider a path structure I2 for the specification in Exam-
ple 3.7.5 that coincides with I1 in the path 〈d0〉 but differs in 〈d1〉 as follows:

M2(d1)(dna t(pr)) = u
M2(d1)(inconsistent) = u
M2(d1)((consent(m, pr)) = u
M2(d1)(presc(s,m, pr)) = u

It is not hard to see that I2 is also a model of our specification, and moreover
I2 � I1. �

3.7.8. Definition. [Least Model] A model M of a specification (E ,P,S) is
minimal with respect to � iff for any other model, N, of (E ,P,S), if N �M
then N = M. The least model of (E ,P,S), denoted LPM(E ,P,S), is a minimal
model that is unique. �

3.7. T RPAD with Default Negation 65

The following definition is key to the notion of well-founded T RPAD models.
It is modeled after [31] with appropriate extensions for PADs.

3.7.9. Definition. [T RPAD-quotient] Let (E ,P,S) be a T RPAD specification,
and I a Herbrand path structure. By T RPAD- quotient of (E ,P,S) modulo I

we mean a new specification, (E,P,S)
I , which is obtained from (E ,P,S) by

• Replacing every literal of the form not b in P ∪ E with

tπ for every path π such that I(π)(not b) = t
uπ for every path π such that I(π)(not b) = u

• And afterwards removing all the remaining rules and PADs that have a
literal of the form not b in the body such that I(π)(not b) = f for some
path π. �

3.7.10. Example. Consider the specification (E ,P,S) consisting in the follow-
ing PADs and rules:

(1) PAD : α→ α⊗ neg f1

(2) PAD : c1 ⊗ α⊗ not inconsistent → α⊗ c1

(3) PAD : c2 ⊗ α⊗ not inconsistent → α⊗ c2

(4) PAD : β → β ⊗ f1

(5) Fluent rule: f1 ← c1 ∧ c2

(6) Fluent rule: inconsistent ← f1 ∧ neg f1

(7) Action rule: γ ← α⊗ not inconsistent ⊗ β

where inconsistent, f1, c1 and c2 are fluents, and α, β, and γ are actions. In
plain English, PAD (1) describes the effect of α on neg f1. PADs (2) and (3)
encode the frame axioms for the fluents c1 and c2 with respect to α with further
qualification that they must not cause inconsistency. PAD (4) describes the
effect of β on f1. The fluent rule (5) defines the fluent f1 in terms of the fluents
c1 and c2, and (6) defines the fluent inconsistent. Rule (7) defines the action γ.
Let I be the Herbrand path where everything is undefined in every path. The
quotient (E,P,S)

I is then as follows:

(1) α→ α⊗ neg f1

(2) c1 ⊗ α⊗ uπ → α⊗ c1 (multiple copies for all possible paths π)
(3) c2 ⊗ α⊗ uπ → α⊗ c2 (again, one per path π)
(4) β → β ⊗ f1

(5) f1 ← c1 ∧ c2

(6) inconsistent ← f1 ∧ neg f1

(7) γ ← α⊗ uπ ⊗ β

66 Chapter 3. Transaction Logic With Partially Defined Actions

3.7.11. Definition. [Union of Path Structures] Let I1 < I2 < . . . be a (pos-
sible infinite) number of path structures. Then we define the infinite union
J = I1 ∪ I2 ∪ . . . as follows:

J(π)(f) =

t if exists a path structure In in the union

such that In(π)(f) = t
f if exists a path structure In in the union

such that In(π)(f) = f
u otherwise

For every path π and literal f . �

Observe that this definition is quite intuitive, since the information ordering ≤
coincides (modulo the paths) with the with set-theoretic inclusion.

Next, we give a constructive definition of well-founded models for T RPAD

specifications in terms of a consequence operator.

3.7.12. Definition. [T RPAD Immediate Consequence Operator] The conse-
quence operator, Γ, for a T RPAD specification is defined by analogy with the
classical case:

Γ(I) = LPM(
(E ,P,S)

I
)

Suppose I∅ is the path structure that maps each path π to the empty Herbrand
interpretation in which all atoms are undefined. That is, for every path π and
literal f , we have I∅(π)(f) = u. The ordinal powers of the consequence operator
Γ are then defined inductively as follows:

• Γ↑0(I∅) = I∅

• Γ↑n(I∅) = Γ(Γ↑n−1(I∅)), if n is a successor ordinal

• Γ↑n(I∅) =
⋃
j≤n Γ↑j(I∅), if n is a limit ordinal �

The operator Γ is monotonic with respect to the ≤-order when (E ,P,S) is
fixed. Because of this, the sequence {Γ↑n(I∅)} has a least fixed point and is
computable via transfinite induction.

3.7.13. Lemma. The operator Γ is monotonic with respect to the information
order relation ≤ when (E ,P,S) is fixed. That is,

If I ≤ I′ then Γ(I) ≤ Γ(I′)

10. Proof. See Appendix E. �

3.7. T RPAD with Default Negation 67

3.7.14. Definition. [Well-founded Model] The well-founded model of a T RPAD

specification (E ,P,S), written WFM((E ,P,S)), is defined as the limit of the se-
quence {Γ↑n(I∅)}. �

3.7.15. Example. Consider the specification,(E ,P,S), in Example 3.7.10. Sup-
pose that we have the following set of premises in S:

d1 B c1

d1 B c2

d1 B f1

d1
α
 d2

d2
β
 d3

Then, the least model M of (E,P,S)
I has the following properties:

1. M(〈d1d2〉)(α) = t

2. M(〈d2d3〉)(β) = t

3. M(〈d1〉)(c1) = t

4. M(〈d1〉)(c2) = t

5. M(〈d1〉)(f1) = t

6. M(〈d2〉)(neg f1) = t

7. M(〈d1〉)(neg f1) = f

8. M(〈d0d1〉)(α) = f

9. M(〈d2〉)(c1) = u

10. M(〈d2〉)(c2) = u

11. M(〈d2〉)(f1) = u

12. M(〈d2〉)(inconsistent) = u

13. M(〈d1d2d3〉)(γ) = u

Items 1,2,3, 4, and 5 hold due to the premises in S. Item 6 holds because of
the effect of α. Items 7 and 8 are false because they can be safely assumed to be
false in the minimal model. Items 9 and 10 are undefined because the postcon-
dition of α is undefined. Item 11 is undefined because c1 and c2 are undefined.
Item 12 is undefined because f1 is undefined. And item 13 is undefined because
part of its definition is undefined. Note that it is possible for f1 to be undefined
and neg f1 to be true in a path. �

3.7.16. Example. Consider the specification in Example 3.7.5 together with
the following rule defining the fluent inconsistent.

inconsistent ← healthy(P), neg healthy(P)

In the specification Λ
I∅

, the sets P, remain the same since they all are not -free.
In E , only the frame axioms and the definition of do presc change as follows

dna t(P)⊗ do presc(T, P,D)⊗ uπ → do presc(T, P,D)⊗ dna t(P)
consent(A,B)⊗ do presc(T, P,D)⊗ uπ → do presc(T, P,D)⊗ consent(A,B)
dr(D)⊗ do presc(T, P,D)⊗ uπ → do presc(T, P,D)⊗ presc(D,P, T)

68 Chapter 3. Transaction Logic With Partially Defined Actions

for every π.
Since Λ

I∅
is not -free, it has a minimal model Γ↑1(I∅) =M1. It follows from

the construction of M1 that M1(〈d1〉)(inconsistent) = u. It is not hard to see
that in the WFM of Λ, inconsistent is also undefined inM1(〈d1〉). This is because
the frame axioms are preventing the inconsistency from occurring, but it is still
detected. �

3.7.17. Theorem. WFM((E ,P,S)) is the least model of (E ,P,S).

11. Proof. See Appendix E. �

3.8 Lifting The Interloping Restriction

In this section we remove the restriction over interloping PADs actions imposed
in Section 3.4. As a result, we obtain a much more expressive language. In
addition, we show how to use default negation to prevent the frame axioms
from introducing inconsistencies.

Recall that two PADs are said to be interloping if they share a common
primitive effect. The action theory of a T RPAD transaction base P, as defined
in Section 3.4, was composed by the following set of axioms:

• Forward Inertia

• Forward and Backward Disablement

• Backward Inertia

• Causality

• Backward Projection

Using default negation, we can remove the restriction over interloping actions
and construct a new action theory that can detect inconsistencies. In order to
do this, we need to introduce a new fluent inconsistent defined in a similar way
as in Example 3.7.16. That is, for every fluent h, the transaction base contains:

inconsistent ← h, neg h

The new action theory, A(E), contains the following set of axioms Frame(E):

Forward Inertia For each fluent literal h and each partially defined action α
such that neither h nor neg h is a primitive effect of α, the following axiom
is in Frame(E):

(inertial(h) ∧ h)⊗ α⊗ not inconsistent → α⊗ h (3.14)

3.8. Lifting The Interloping Restriction 69

Forward and Backward Disablement Let g be a literal and α a pda. Let
p1
g . . .p

n
g be the partial action definitions of α with the primitive effect

g. Let f1
g . . . f

n
g be the preconditions of p1

g . . .p
n
g respectively. Then the

following forward disablement axioms are in Frame(E):

(inertial(g) ∧ not f1
g ∧ · · · ∧ not fng)⊗ g ⊗ α⊗

not inconsistent → α⊗ g
(inertial(g) ∧ not f1

g ∧ · · · ∧ not fng)⊗ neg g ⊗ α⊗
not inconsistent → α⊗ neg g

(3.15)

If g is a base fluent,7 then the following backward disablement axioms are
also in Frame(E):

(inertial(g) ∧ not f1
g ∧ · · · ∧ not fng ∧ not inconsistent)⊗ α⊗

g → g ⊗ α
(inertial(g) ∧ not f1

g ∧ · · · ∧ not fng ∧ not inconsistent)⊗ α⊗
neg g → neg g ⊗ α

(3.16)

In other words, if the pdas p1
g . . .p

n
g are disabled in some state then exe-

cuting α in that state does not change the truth value of the fluents g.

Backward Inertia For each pda α such that f is a base fluent which is not
primitive effect of α:

(inertial(f) ∧ not inconsistent)⊗ α⊗ f → f ⊗ α (3.17)

The Backward Projection and Causality axioms are removed from the action
theory, since once the interloping restriction is lifted, there is not one-to-one
relation between preconditions and effects.

Now we establish the relation between the action theory in T RPAD with
respect to the action theory in T RPAD with default negation. First we need the
following definition

3.8.1. Definition. [Simple Specification] We say that a specification (E ,P,S)
is simple if

• It makes no use of default negation.

• It has no interloping actions.

• There is no literal f such that there exists a path π where E ,P,S, π |= f
and E ,P,S, π |= neg f .

7Recall that base fluents are the fluents which are not defined by Horn-rules.

70 Chapter 3. Transaction Logic With Partially Defined Actions

• For every database state identifier d and literal f , E ,P,S,d |= f or
E ,P,S,d |= neg f . �

We say that a partial Herbrand path structure I is 2 valued, if and only if
for every path π and not -free literal h, either I(π)(h) = t, or I(π)(h) = f.

3.8.2. Definition. We define the function 2val from simple partial Herbrand
path structures, to Herbrand path structures as follows:

2val(I)(π) = {f | I(π)(f) = t}

�

Since in T RPAD with default negation we allow interloping action, in the
general case we cannot have neither Causality frame axioms nor Backward Pro-
jection. However, since now we want to compare these two different action
theories for simple specifications, we add the Causality frame axioms and Back-
ward Projection to A(E) as defined in Section 3.4.

3.8.3. Lemma. Let (E ,P,S) be a simple specification. Let I be a model of
(A(E),P,S). For every not -free serial conjunction G,

if I, π |= G then 2val(I), π |= G

12. Proof. Follows straightforwardly from Definition 3.8.2. �

3.8.4. Theorem. Let (E ,P,S) be a simple specification. Let I be a model of
(A(E),P,S). Then 2val(I) is a model of (A(P ∪ E),S).

13. Proof. See Appendix E. �

3.9 Summary of the Contributions

In this chapter we extended Transaction Logic and made it suitable for reasoning
about partially defined actions. We illustrated the power of the language for
complex reasoning tasks involving actions and gave a sound and complete proof
theory for that formalism. We also showed that, when all partially defined
actions are definite, such reasoning can be done by a reduction to ordinary logic
programming. This last contribution provides an easy way to implement and
experiment with the formalism, although a better implementation should be
using the proof theory directly, similarly to the implementation of the serial-
Horn subset of T R in FLORA-2 [50].

This work continues the line of research started in [10], which, however, was
targeting a different fragment of T R, and it did not provide a complete proof

3.9. Summary of the Contributions 71

theory or a reduction to logic programming. It also did not consider premise
statements and thus could not be used for reasoning about partially defined
actions without further extensions.

In many respects, T RPAD supports more general ways of describing ac-
tions than other related formalisms [39, 35, 8, 17, 38, 7, 16], including non-
determinism, recursion, and hypothetical suppositions. Uniquely among these
formalisms it supports powerful ways of action composition. Nevertheless, T RPAD

does not subsume other works on the subject, as it cannot perform certain rea-
soning tasks that are possible with formalisms such as [16, 7, 38].

Finally, we extended T RPAD with default negation to allow non-monotonic
reasoning. In particularly, we showed how default negation can be used to lift
the restriction over interloping actions and be able to detect inconsistencies.
Along the way we defined a well-founded semantics for T RPAD, which, to the
best of our knowledge, has never been done before.

Chapter 4
Modeling Action Languages with
T RPAD

There is neither happiness nor
misery in the world; there is only
the comparison of one state with
another, nothing more.

Alexandre Dumas
The Count of Monte Cristo

A number of sophisticated logical theories to reason about actions have been
developed over the years, including Situation Calculus [61], Fluent Calculus
and Flux [76, 62], Event Calculus [51], L1[8], A[35], L1[8], C[36], ALM[46].
Unfortunately, most of such languages have their weak points along with the
strong ones, and neither is sufficient as a logical foundation for agents.

T RPAD is based on a very different logical paradigm than the aforesaid lan-
guages, and it is an interesting challenge to understand the relative expressive
power of these languages.

In this chapter we identify and compare the modeling and reasoning capa-
bilities of T RPAD (without default negation) and L1. We chose L1 because it
is a powerful language that can serve as a good representative of the family of
action languages mentioned earlier. However, we also briefly discuss the relation
between T RPAD and the action languages: Situation Calculus, Event Calculus,
Fluent Calculus, C and ALM.

After introducing the languages, we compare them on a number of examples
and then prove the equivalence between subsets of both languages. However,
it is the symmetric difference of these languages that is perhaps most interest-
ing. Throughout this chapter we investigate that difference using the following

73

74 Chapter 4. Modeling Action Languages with T RPAD

running example based on the health insurance scenario:

4.0.1. Example. [Health Insurance] The problem is to encode the following
set of health insurance regulations. (i) For vaccination to be compliant, doctors
must require that patients obtain authorization from their health insurers prior
to vaccination. (ii) To obtain authorization, the patient must first visit a doctor
(or be a doctor). (iii) Vaccinating a healthy patient makes her immune and
healthy. (iv) A patient who has a flu is not healthy, but (v) flu can be treated
with antivirals. In addition, we know that (vi) there is a patient, John, who has
a flu, is not immune and (vii) is a doctor. We want to find a legal sequence of
actions (a plan) to make John immune and healthy. �

We show how limitations of each language can be worked around to represent the
above problem. Then we venture into the domain of action planning and discuss
how it is done in each language. We show that certain planning goals, those
that require intermediate conditions in order to construct legal plans, cannot be
easily expressed in L1 and that they are very natural in T RPAD.

This chapter is organized as follows. Section 4.1 presents the necessary back-
ground needed to understand L1. Section 4.2 illustrates similarities and differ-
ences between the two formalisms by means of non-trivial examples. Section 4.3
studies a fragment of L1 and reduces it to T RPAD. We show that the reduction
is sound with respect to the L1 semantics and complete with respect to the
logic programming embedding of L1. Section 4.4 discusses planning problems
in both formalisms and Section 4.5 compares T RPAD with other popular action
languages: Situation Calculus, Event Calculus, Fluent Calculus, C and ALM.
Section 4.6 briefly discuss the relation between T RPAD with default negation
and the action languages mentioned above. Section 4.7 concludes the chapter.

4.1 Action Language L1

This section reviews the basics of the action language L1 [8]. The alphabet of L1

consists of three disjoint nonempty sets of symbols: a set of fluent names F, a
set of action names A, and a set of situations S. The set S contains two special
situations: s0, which is called the initial situation, and sC , called the current
situation (which is also the last one). The language L1 contains two kinds of
propositions: causal laws and facts. In the following table, each f, f1 . . . fn is a
fluent literal, each si is a situation, a is an action and α is a sequence of actions.

4.1. Action Language L1 75

Causal laws

(1) a causes f if f1 . . . fn (causal law)

Atomic Facts

(2) α occurs at s (occurrence fact)
(3) f at s (fluent fact)
(4) s1 precedes s2 (precedence fact)

The causal law (1) describes the effect of a on f . We will say that f1 . . . fn is
the precondition of the action a and f is its effect. Intuitively, the occurrence
fact (2) means that the sequence α of actions occurred in situation s. The
fluent fact (3) means that the fluent f is true in the situation s. The precedence
fact (4) states that the situation s2 occurred after the situation s1. Statements
of the form (2), (3), (4), are called atomic facts. A fact is a conjunction or
disjunction of atomic facts. An L1 domain description is a set of laws and
facts D. Two causal laws of the form

a causes f if f1 . . . fn
a causes ¬f if q1 . . . qm

are contradictory if {f1 . . . fn} ∩ {¬q1 . . .¬qm} = ∅.
It is worth noting that with disjunction one can express possible states of the

world and non-determinism. For instance, we could say that in the initial state
the patient is either healthy or has a flu: healthy at s0∨flu at s0, this is not ex-
pressible in T RPAD. One can also state that in the initial state, either the patient
is vaccinated or the doctor asks for an authorization vaccinate occurs at s0 ∨
request authorization occurs at s0. With conjunctions of occurrence-facts we could
express concurrency of action execution as in

vaccinate occurs at s0 ∧ request authorization occurs at s0

However, the semantics (cf. Definition 4.1.3) does not support concurrent ex-
ecution of actions at the same state. Unfortunately, the boost of expressivity
coming from the propositional combination of atomic facts cannot be exploited
for reasoning. This is because the reduction of L1 to LP works only when such
combinations are disallowed.

4.1.1. Example. [8] Suppose that we know two facts about Fred:

• Initially, Fred was alive and dry.

• When the water pistol was squirted, at a later moment, a shot was fired
at Fred.

Suppose also that it is generally known that

76 Chapter 4. Modeling Action Languages with T RPAD

• squirting makes Fred wet and

• shooting makes Fred dead.

The information informally introduced above can be represented by a domain
description D1 consisting of the following propositions:

D1 =

Facts :
(p1) alive at s0
(p2) dry at s0
(p3) squirt occurs at s0
(p4) s0 precedes s1
(p5) shoot occurs at s1
Laws :
(p6) squirt causes ¬dry
(p7) shoot causes ¬alive

�

Intuitively, L1 works with the following informal assumptions

1. The values of fluents can change only by the effects of actions;

2. The only action names in A are those from the language of the domain
description;

3. There are no effects of actions except those specified by the causal laws of
the domain;

4. Only one action can be executed at the time; and

5. Actions are executed only if it is specified so in the domain description.

Semantics:

A model of a domain description D consists of a mapping from situations to
sequences of actions and a mapping from sequences of action to states. A state
is a set of fluent-atoms.

4.1.2. Definition. [Situation Assignment] A situation assignment of D,
sit2act, is a partial function from situations to sequences of actions such that:

• sit2act(s0) = [], where [] is the empty sequence of actions.

• For every s ∈ S, sit2act(s) is a prefix of sit2act(sC) �

Intuitively, if sit2act(sk) = α, it means that executing α in s0 leads to sk.

4.1. Action Language L1 77

4.1.3. Definition. [Action Interpretation] An action interpretation of D,
act2st, is a partial function from sequences of actions to states such that:

• The empty sequence [] is in the domain of act2st and

• For any sequence of actions α and action a, if [α, a] is in the domain of
act2st, then so is α. �

By composing these two functions we can map situations to states. Given a
fluent name f , and a state σ, we say that f holds in σ if f ∈ σ; ¬f holds in σ
if f 6∈ σ. The truth of a propositional combination of fluents with respect to σ
is defined as usual. We say that a fluent literal f is an immediate effect of an
action ai in a state σ, if there is a causal law of the form ai causes f if f1 . . . fn
in D, whose preconditions f1 . . . fn hold in σ. The following three sets of fluents
are needed to define models in L1.

E+
ai(σ) = {f | f ∈ F and f is an immediate effect of ai in σ}

E−ai(σ) = {f | f ∈ F and ¬f is an immediate effect of ai in σ}
Res(ai, σ) = (σ ∪ E+

a (σ)) \ E−a (σ)

An action interpretation act2st satisfies the causal laws of D if for any se-
quence of actions [α, a] from the language of D,

act2st([α, a]) =

{
Res(a, act2st(α)) if E+

a (act2st(α)) ∩ E−a (act2st(α)) = ∅
undefined otherwise

4.1.4. Definition. [Model] A modelM of L1, is a pair (act2st, sit2act), where

• act2st is an action interpretation that satisfies the causal laws in D,

• sit2act is a situation assignment of S where sit2act(sC) belongs to the
domain of act2st. �

The actual path of a model M for a domain description D is sit2act(sC).1

Intuitively, it represents the unique sequence of actions defined by M and con-
sistent with D.

The query language associated with L1, denoted LQ1 , consists of all fluent-
facts in L1, plus an expression of the form f after [a1 . . . an] at s, called a
hypothesis. Intuitively, it says that if the sequence a1 . . . an of actions can be
executed in the situation s, then the fluent literal f must be true afterwards.
Observe that by defining a pair of relationships between situations and states
(sit2act and act2st) rather than one enables L1 to express hypothetical queries
since act2st can query states which are not associated with any situation in the
domain description.

1Recall that sC is the current situation.

78 Chapter 4. Modeling Action Languages with T RPAD

Figure 4.1: L1 models

4.1.5. Definition. [Satisfaction] For any model M = (act2st, sit2act)

1. f at s – is true in M if f is true in act2st(sit2act(s)).

2. α occurs at s – is true in M . if the sequence [sit2act(s), α] is a prefix of
the actual path sit2act(sC) of M .

3. s1 precedes s2 – is true inM if sit2act(s1) is a proper prefix of sit2act(s2).

4. f after [a1 . . . an] at s is true inM if f is true in act2st([sit2act(s), a1 . . . an]).

5. Truth of conjunctions and disjunctions of atomic facts in M are defined
as usual. �

Since fluent facts can be expressed as hypotheses, we focus on just these kind
of statements.

The next definition imposes a minimality condition on the situation assign-
ments of S that formalizes the informal assumption that an action is executed
only if it is required by the domain description.

4.1.6. Definition. [Minimal Model] A model M = (act2st, sit2act) is a min-
imal model of a domain description D in L1 if the following conditions are
satisfied:

1. act2st is a causal model of D

2. facts of D are satisfied in M and

4.1. Action Language L1 79

3. there is no other interpretation M ′ = (act2st, sit2act′) such that M ′

satisfies conditions 1 and 2 above and sit2act′(sC) is a subsequence of
sit2act(sC) �

Definition 4.1.7 describes the set of acceptable conclusions obtainable from
a domain description D.

4.1.7. Definition. [Entailment] A domain description D entails a query q
(written as D |= q) iff q is true in all minimal models of D. We will say that
the answer given by D to a query q is yes if D |= q, no if D |= ¬q, unknown
otherwise. �

Reducing L1 to Logic Programming

In this section we present a reduction from a fragment of L1, to Logic Program-
ming. This reduction was developed in [8], and works only with simple domain
descriptions. This notion is defined next. First we introduce the definition of
explicit paths.

4.1.8. Definition. [Explicit Path] Let D be a consistent domain description
and s0 . . . sk be a list of situation constants occurring in statements from D. We
say that D has an explicit path if

1. si precedes si+1 ∈ D(0 ≤ i < k)

2. D |= sk = sC

3. there is a sequence α = a0 . . . ak−1 of actions such that:

• ai occurs at si ∈ D(0 ≤ i < k)

• D |= α occurs at s0 �

In other words, a domain description has an explicit path if there is complete
information about the occurrences of actions and temporal relation between
situations. It is easy to see that any domain description D satisfying these
conditions has a unique actual path.

4.1.9. Definition. [Simple Domain Description] A domain description D is
simple if

1. D is consistent;

2. D has an explicit path;

3. All facts of D are atomic, and

80 Chapter 4. Modeling Action Languages with T RPAD

4. D does not contain contradictory causal laws. �

We denote the set of LP rules that constitute the reduction, PD. The alpha-
bet of PD will consist of symbols for actions, fluent literals (where ¬ is replaced
by the strong negation neg), and situations from the language of D, predi-
cates true at, true after, all true after, false after, one false after, causes,
and ab. We will use the following typed variables:

• A,A1, A2 . . . for actions

• F, F1, F2 . . . for fluent literals

• P for lists of fluent literals

• R for lists of actions

The corresponding lower case letter of A,F, S, etc., will denote constants of
respective types. We say that the atoms of the form true after(f, r, si) and
false after(f, r, si) are incompatible.

The program PD in the above language is consistent if it has an answer
set, and no answer set of PD contains incompatible atoms. Let D be a simple
domain description with the explicit path a0 . . . ak−1. The reduction PD of a
domain description D consists of the following rules:

1. Domain Dependent Axioms

(a) (AP) Description of Explicit Path

imm follows(s1, s0)
. . .
imm follows(sk, sk−1)
occurs at(a0, s0)
. . .
occurs at(ak−1, sk−1)

(b) (BC) Boundary Conditions

true at(f, si) ∈ PD for each f at si ∈ D

(c) (CL) Causal Laws

causes(ai, f, p) ∈ PD for each ai causes f if p ∈ D

2. Domain Independent Axioms

4.1. Action Language L1 81

(a) (EA) Effects of actions

e1. true after(F, [], S) : − true at(F, S)
e2. true after(F, [A | R], S) : − causes(A,F, P),

all true after(P,R, S)
e3. false after(F,R, S) : − true after(negF,R, S)
e4. all true after([], R, S) .
e5. all true after([F | P], R, S) : − true after(F,R, S),

all true after(P,R, S)
e6. one false after(P,R, S) : − false after(F,R, S)(with F ∈ P)

(b) (FI) Inertia Axioms

i1. true after(F, [A | R], S) : − true after(F,R, S),
not ab(F,A,R, S)

i2. ab(F,A,R, S) : − causes(A,F, P),
not one false after(P,R, S)

(c) (SI) Second Inertia Axiom

true at(F, S2) : − imm follows(S1, S2),
occurs at(A1, S1), true after(F, [A1], S1)

The set of all ground instantiation of all rules of PD except for the Second
Inertia Axiom (SI) and the Description of the Explicit Path (AP), not containing
any other situation constants except si is denoted by Hi.

It is easy to see that the LP reduction PD consists of the union of the sets
H0 . . . Hk together with the ground instantiations of SI and AP .

4.1.10. Definition. [P1] Let D be a simple domain description. Let PD be
the LP-reduction of D. We define P1 to be the program obtained from PD by
replacing (SI) and (AP) by

true at(F, si) : −true after(F, ai−1, si−1)

where 0 < i ≤ k and (ai−1 occurs at si−1) ∈ D. �

Since D |= f at s if and only if D |= f after [] at s, from now on we will
limit our query language to formulas of the form f after α at s. Given a query
q of the form f after α at s, π(q) will denote the LP query true after(f, α, s).

4.1.11. Proposition. [8] Consider a simple domain description D. Then for
any query q in D, P1 |= π(q) iff PD |= π(q)

82 Chapter 4. Modeling Action Languages with T RPAD

4.1.12. Proposition. [8] Let D be a simple domain description. For any 0 ≤
i ≤ k, and any collection I of formulas of the form true at(f, si) such that
D |= f at si, the program Hi ∪ I has a unique answer set and is sound with
respect to D.

4.1.13. Proposition. [8] Let li (0 ≤ i ≤ k) be the rule

true at(f, si) : −true after(f, [ai−1], si−1)

For any 0 ≤ m ≤ k, the program Tm:

Tm = H0 ∪ (l1 ∪H1) ∪ · · · ∪ (lm ∪Hm)

has a unique answer set and is sound with respect to D

Note that Tk is the same as PD.

4.1.14. Proposition (Soundness of PD). [8] For any simple domain de-
scription D its logic programming reduction PD is sound with respect to D.

4.2 Motivating Examples

In this section we show a set of non-trivial examples to highlight the commonali-
ties and differences between T RPAD and L1. For simplicity, the examples in this
chapter are all propositional. However, T RPAD supports first order predicates
and variables.

4.2.1. Example. [Health Insurance (cont’d)] Consider the US health insur-
ance regulations scenario of Example 4.0.1. The specification TH = (P,S) in
Figure 4.2 shows a T RPAD representation of that scenario. In the rules in Fig-
ure 4.2, vaccinate legally, request authorization, vaccinate and take antivir are actions, while
healthy , flu, visited dr , doctor , immune and authorized are fluents. Note that the two
PADs defining request authorization are interloping, which was discussed before. For
clarity, each statement is numbered with the corresponding regulation number
from Example 4.0.1.

The corresponding domain description DH for the language L1 is shown in
Figure 4.3. Since fluent rules are not allowed in L1, we manually encoded the
consequence of regulation (iv) in the initial state. �

4.2.2. Example. [Health Insurance (cont’d)] Consider Example 4.2.1 extended
with the following additional information.

(viii) executing take antivir in the initial state leads to state 1.

4.2. Motivating Examples 83

P =

(i) vaccinate legally← request authorization⊗ authorized ⊗ vaccinate
(ii) doctor ⊗ request authorization→ request authorization⊗ authorized

(ii) visited dr ⊗ request authorization→ request authorization⊗ authorized

(iii) healthy ⊗ vaccinate→ vaccinate⊗ immune ⊗ healthy

(iv) neg healthy ← flu

(v) take antivir→ take antivir⊗ healthy ⊗ neg flu

S =

(vi) d1 B flu

(vi) d1 B neg immune

(vii) d1 B doctor

Figure 4.2: T RPAD formalization of the health care scenario

DH =

(i) vaccinate legally causes immune ∧ healthy if healthy ∧ authorized

(ii) request authorization causes authorized if doctor

(ii) request authorization causes authorized if visited dr

(iii) vaccinate causes immune if healthy

(iv) ¬healthy at s0

(v) take antivir causes healthy if flu

(vi) flu at s0

(vii) doctor at s0

Figure 4.3: L1 formalization of the health care scenario

(ix) executing vaccinate in state 1 leads to state 2.

This additional information is shown in Figure 4.4 for both languages. In T RPAD,
we can use the inference system to derive P,S,d0--- |= take antivir ⊗ vaccinate ⊗
healthy , meaning that the patient becomes healthy as a result. In L1, the reduc-
tion of DH to logic programming, PDH , can be used to establish the same thing
(albeit in different notation): DH |= healthy after [take antivir, vaccinate] at s0. �

Discussion: The formalizations of Example 4.0.1 in L1 and T RPAD are not
equivalent, however. For example, L1 does not allow compound actions, mak-
ing the representation of the problem a little harder and less modular; and it
does not allow fluent rules which makes it impossible to express dependencies
between fluents. On the other hand, T RPAD (recall that we are working with-
out default negation) does not support interloping actions in the definition of
request authorization. This constraint can be circumvented using the transformation
in Figure 4.5, but this comes at the expense of readability.

84 Chapter 4. Modeling Action Languages with T RPAD

TH =

 (viii) − d0
take antivir
 d1

(ix) − d1
vaccinate
 d2

DH =

(viii) − take antivir occurs at s0

(viii) − s0 precedes s1

(ix) − vaccinate occurs at s0

(ix) − s1 precedes s2

Figure 4.4: Describing states and executions in T RPAD and L1.

DH =

(i) − vaccinate legally← request authorization1 ⊗ authorized ⊗ vaccinate
(i) − vaccinate legally← request authorization2 ⊗ authorized ⊗ vaccinate

(ii) − doctor ⊗ request authorization1 → request authorization1 ⊗ authorized

(ii) − visited dr ⊗ request authorization2 → request authorization2 ⊗ authorized

Figure 4.5: Replacing Interloping actions in T RPAD

In sum, the above examples show certain similarities in the modeling capa-
bilities of T RPAD and L1: elementary actions (PADs vs. causal laws), states
(state-premises vs. fluent facts), execution of actions (state-premises vs. occur-
rence facts), hypothetical queries (hypothetical transactions vs. hypotheses).
However, the semantics of these languages are completely different and so are
some of the capabilities (compound actions and fluent rules vs. interloping ac-
tions). From the reasoning perspective, T RPAD has a sound and complete proof
system, whereas L1’s reasoning depends on a sound, but incomplete translation
to logic programing.

4.3 Representing LA
1 in T RPAD

In this section we define a reduction for the accurate fragment of L1, denoted
LA1 to T RPAD

D (without default negation), and provide a soundness proof. The
accurate fragment of L1 is defined as LA

1 except that it allows only simple do-
main descriptions and disallows interloping causal laws. Although the reduction
presented here is not complete with respect to LA1 , we show that it is complete
with respect to the LP reduction of L1 developed in [8]. Let D be a simple LA1
domain description. Given an alphabet LD of D, the corresponding language
LT R of the target T RPAD formulation will consist of symbols for actions and
fluents literals from LD, except that the symbol ¬ in LA

1 , is replaced with neg
in LT R. In the remainder of the section, let D be a simple domain description

4.3. Representing LA1 in T RPAD 85

in LA
1 . Since simple domain descriptions have an explicit linear order over the

situations and actions, we can disregard the precedes facts from the reduc-
tion, as they become redundant. Thus, we only translate the remaining laws
and facts. The reduction Λ(D) = (P,S) of D is defined in Figure 4.6. For the
reduction, we map each situation si in D to the database state di. In addition,

Fact or Law LA
1 T RPAD

Causal Law a causes f if b1 ∈ D b1 ⊗ a→ a⊗ f ∈ P
Fluent Fact f at si ∈ D di B f ∈ S
Occurrence Fact a occurs at si ∈ D di

a
 di+1 ∈ S

Figure 4.6: Reduction for the accurate fragment of L1 to T RPAD
D

we postulate that every fluent in Λ(D) is inertial in every database state. That
is, for every fluent f and database state d,

P,S,d |= inertial(f)

Thus, since inertial(f) is “always true” for every fluent and every state, to avoid
tedious repetition we remove the inertial predicate from every rule in the action
theory without harming the semantics of the rule. In addition, we include in the
reduction the action theory of P. Recall that the action theory A(P) of a trans-
action base P consists of P and the frame axioms. Note that the translation of
occurrence-facts of L1 takes care of both the facts of the form ai occurs at si
and si precedes ai+1 since, by definition, these two types of formulas are en-
coded in the order of actions in an explicit actual path. Recall that the query lan-
guage in L1 consist of hypothesis of the form q = f after [a1, a2, . . . , an] at si.
Therefore, to check soundness we restrict our query language to statements of
the form: a1 ⊗ a2 ⊗ · · · ⊗ an ⊗ f .

4.3.1. Theorem. (Soundness) Let D be a simple domain description. Let
Λ(D) = (P,S) be the T RPAD reduction of D. Suppose that P,S,di . . .dn |=
α⊗ f . Then D |= f after α at si.

14. Proof. See Appendix. �

As illustrated in the previous example, Λ(D) is incomplete with respect to
D. However, Λ(D) is complete with respect to P(D) as stated in the following
theorem.

4.3.2. Theorem (Completeness with Respect to PD). Let D be a sim-
ple domain description. Let Λ(D) = (P,S) be the T RPAD

D reduction of D. Sup-
pose PD |= true after(f, r, si). Then P,S,di |= r ⊗ f .

15. Proof. See Appendix. �

86 Chapter 4. Modeling Action Languages with T RPAD

4.4 Planning: L1 vs T RPAD

We now turn to the problem of planning [83] agents’ actions and compare the
capabilities of T RPAD and L1. Planning has been used in the areas of robotics,
computer-aided design, manufacturing, computer graphics, aerospace applica-
tions, drug design, etc [83]. In planning, one starts with an initial state and
action specifications and seeks to find a sequence of actions that lead to a state
with certain desirable properties. We will show how the two languages approach
the corresponding modeling and reasoning tasks.

Planning in L1. In [8], the initial state and the goal are represented by fluent
facts, and the action descriptions by causal laws. However, L1 is not expressive
enough to encode a planning strategy, since it expresses recursion which is needed
to search over the space of all possible plans. To cope with this problem, L1

is embedded in LP and planning strategies are then expressed in that larger
setting.

Let D be an L1 domain description, s0 the initial state, and goal the planning
condition (i.e., we are looking for a sequence of actions that leads to a state
satisfying goal). Given a sequence of actions αi, let Dαi denote the following
domain description:

D ∪ {sj precedes sj+1, aj occurs at sj | j = 0 . . . i}
The planner for D can be described by the following loop, where initially N = 0.

1. Generate all possible sequences of actions α1 . . . αm of length N ,

2. For every domain Dαi , i = 1 . . .m, check: Dαi |= goal after αi.
If true, the goal has been reached and the plan αi is returned.

3. Increase N , and go to Step 1.

This program generates all the plans that satisfy the goal, and guarantees that
the shortest plan will be found first.

Planning in T RPAD. In [11], it was shown that planning strategies can be rep-
resented directly as T R rules and transactions, and plans could then be found
by simply executing suitable transactions. Here we extend that formulation to
model conditional planning. We also make use of premise statements and PADs
to support more complex planning problems, including planning in the presence
of incomplete information. The purpose here is to demonstrate that planning
is possible, not to find the shortest plan. Additional techniques found in [11],
including “script-based planning” and “locking,” can also be ported to T RPAD.
Suppose we have a planning problem consisting of (i) an initial state d0, (ii)
a set of actions A consisting of n elementary actions defined as PADs and m
compound actions, a set of PADs PPAD and rules Prule for the actions in A.
and (iii) a planning goal goal . Then, the T RPAD representation of a planner
consists of:

4.4. Planning: L1 vs T RPAD 87

1. A set of state-premises that model the knowledge about the initial state
d0,

2. A new set of actions A′ = A ∪As, where As = {as | a is a pda in A}.
The new actions as are compound (not pdas, although they are created
out of pdas).
The new set of PADs, P′PAD, has a PAD of the form b1 ⊗ a ⊗ b2 →
b3⊗ a⊗ b4⊗ succeededa for each PAD of the form b1⊗ a⊗ b2 → b3⊗ a⊗ b4
in PPAD. Intuitively, succeededa is used to test that the pda a was executed
successfully.
The set of rules P′rule contains a rule r′ for every rule r in Prule, where r′

is an exact copy of r except that each pda a ∈ A that occurs in the body
of r is replaced in r′ with the corresponding compound action as ∈ As.
Also, for each pda a ∈ A and the corresponding new compound action
as ∈ As, P′rule has a new rule of the form as ← a⊗ succeededa.

3. A′ has two additional compound actions: plan and act. Intuitively, act is
a generic action and plan represents sequences of such—generic—actions.
P′rule includes additional rules that define plan and act, as shown below.

4. A set of run-premises that encodes the possible executions of the pdas,
described below.

5. A transaction of the form plan⊗ goal , whose execution is expected to pro-
duce the requisite plan.

The encoding of Planning in T RPAD is composed by the following premises,
PADs, and serial-Horn rules:

Initial State For each fluent f ∈ d0

d0 B f

Actions For each PAD in A of the form b1 ⊗ a⊗ b2 → b3 ⊗ a⊗ b4

b1 ⊗ a⊗ b2 → b3 ⊗ a⊗ b4 ⊗ succeededa

as ← a⊗ succeededa

Auxiliary Rules Let c1 . . . cm be the compound actions in A where each pda
a is replaced by as; and let skip be an action that does not cause a state

88 Chapter 4. Modeling Action Languages with T RPAD

change. Then
plan← act⊗ plan
act← as1
· · ·

act← asn
act← c1

· · ·
act← cm
act← skip

Goal Let goal be the planing goal. Then such goal is represented by the follow-
ing transaction:

?- plan⊗ goal

Executions for each pda a ∈ A and a sequence r consisting of the indices
{1 . . . n}

dr
a
 dr′

The key features of T RPAD that enable this sort of general representation
of planning are: (i) Premises and PADs are used to describe the content of the
initial state, the frame axioms, and the effects of the actions; (ii) Compound
Actions, which allow combining simpler actions into complex ones in a modular
way; (iii) Recursion allows the inference system to use the generate-and-test
method for plans; (iv) Non-determinism allows actions to be executed in differ-
ent ways and, together with recursion, supports exploration of the search space
of all possible plans. Finally, the last two features also enable one to define rules
that produce various heuristic-directed searches available in various advanced
planning strategies.

Observe that neither of the above solutions guarantees termination, but both
can be restricted by putting an upper limit on the maximum length of the plans.

4.4.1. Example. [Planning] Consider the specification TH and the domain de-
scription DH for the health care scenario of Example 4.2.1. Recall that our goal
is to find a legal plan that makes the patient John (who is a flu-afflicted doctor
and one who lacks immunity) into an immune and healthy person. That is, our
planning goal is g1 = immune ∧ healthy . We will examine the behavior of the
planners in both formalisms.

The case of L1: The LP program would start checking if DH |= g1 after [].
Since the goal is not satisfied in DH it would increase N and try sequences of
length 1. The planner will find the plan [take antivir, vaccinate]. when N = 2.
However, this plan is not compliant with the law as required. This “illegal”
plan was found because the goal does not represent the meaning of legal plans.

4.5. Relationship with Other Action Languages 89

(1) A(P),S,d1 |= neg immune

(2) A(P),S,d1d2 |= take antivirs ⊗ healthy

(3) A(P),S,d2d3 |= request authorizations ⊗ authorized

(4) A(P),S,d1d3 |= plan⊗ neg immune ∧ authorized

(5) A(P),S,d3d4 |= vaccinates ⊗ immune ∧ healthy

(6) A(P),S,d1---d4 |= plan⊗ neg immune ∧ authorized ⊗ plan⊗ immune ∧ healthy

Figure 4.7: Planner execution in T RPAD

Unfortunately, the query language of L1 is not expressive enough to deal with the
requirement that the patient must obtain an authorization before vaccination.
One could try the goal g1∧authorized , but it is easy to see that this goal can lead
to illegal plans as well. A solution could be to remove vaccinate from the action
description to avoid the bad plans but this weakens the domain description and
might block other desired inferences.

The case of T RPAD: As described earlier, we need to transform the specifi-
cation into the following (we show only the main parts):

healthy ⊗ vaccinate→ vaccinate⊗ immune ⊗ healthy ⊗ succeedvaccinate

vaccinates ← vaccinate⊗ succeedvaccinate

vaccinate legally← request authorizations ⊗ authorized ⊗ vaccinates

plan← act⊗ plan
act← vaccinates

d[]
vaccinate
 d[1]

Since we saw that the goal g1 may lead to bad plans, we will modify the goal to
specify that the patient can be vaccinated only after getting an authorization.
This can be expressed as follows: g2 = plan ⊗ (neg immune ∧ authorized) ⊗ plan ⊗
(immune ∧ healthy). The goal states that the planner must first try to obtain
an authorization while the patient is still not immunized. Having achieved
that, the planner will go on and plan for immunizing the patient and making
her healthy. Note the ability of T RPAD to specify intermediate conditions that
the planner must achieve, not just the final goal. This is not possible in L1

without complicated encoding. The T RPAD planner will construct a desired
plan while proving the goal g2 from the above specification at the initial state
d0. Figure 4.7 illustrates how this works. The resulting plan will be take antivir⊗
request authorization⊗ vaccinate, which is equivalent to take antivir⊗ vaccinate legally. �

4.5 Relationship with Other Action Languages

We will now briefly compare T RPAD with several well-known action languages,
which provide interesting features not present in L1.

90 Chapter 4. Modeling Action Languages with T RPAD

The ALM language [46]. This action language introduces the following
features that L1 lacks: defined fluents, modular definition of actions, sorts,
executability conditions and a form of concurrency. Although in ALM one can
describe the effects and hierarchies of actions, and define fluents based on other
fluents, one cannot (i) express the execution of actions like occurrence facts in
L1 and run-premises in T RPAD do, or (ii) assert information about the states,
like fluent facts in L1 and state-premises in T RPAD do. Recursion is disallowed
for actions, but it is allowed for fluents.
T RPAD can express most of these new features easily: defined fluents are ex-

pressed with fluent rules, modular definition of actions is done using compound
actions, sorts can be emulated by predicates, and executability conditions can
be represented as in our planning example (the as type of compound actions).
However, T RPAD does not yet handle concurrency.

The C language [36]. This language is based on the theory of causal ex-
planation. That is, everything that is true in a state must be caused. This
implies that the frame axioms are not part of the semantics but are expressed
as axioms. In that sense, T RPAD is closer to C than to L1. The language C is
the simplest among the formalisms mentioned so far. It only allows causal laws
and fluent definitions of the form: caused F if G and causes F if G after H,
where F,G,H are propositional formulas, and only H can contain actions. Note
that H may contain more than one action, which leads to concurrency in causal
laws. Although causal laws can contain disjunctions in the rule conditions and
effects, which is disallowed in PADs, in the propositional case disjunction can
be modeled in T RPAD by splitting rules. In this way, T RPAD can model non-
concurrent C domain description. In addition, [36] also shows how to encode
forward-reasoning frame axioms, but C is not expressive enough to solve prob-
lems that involve backward reasoning, which is easily done in T RPAD.

Situation Calculus and Golog [48, 71, 56]. In the Situation Calculus
(SC) a domain description is composed of the following axioms:

• An axiom for each action in the language specifying the action precondi-
tions. Action preconditions are conjunction of fluent literals.

• For each fluent, the successor state axioms which describe the effect of the
different actions on that fluent. These axioms also take care of encoding
the inertia laws.

• Axioms describing defined fluents.

• The foundational axioms of the situation calculus. The description of
these axioms are beyond the scope of this work, further details can be
found in [48], [71].

4.5. Relationship with Other Action Languages 91

There are two important features in T RPAD that are lacking in SC: hypotheti-
cal formulas (which may include actions), and a direct connection between the
precondition of the action and its effect. In SC the preconditions of actions are
specified separately from their effect, so it is rather difficult to specify differ-
ent effects for an action that depend on different preconditions. The lack of
hypothetical formulas is a more delicate issue since, for instance, these kind of
statements are necessary to model production systems augmented with ontolo-
gies (c.f. Chapter 5). SC also lacks the flexibility to specify which actions are
subject to the inertia laws in which state.

Some features, like recursion, sequence of actions, and complex actions, were
absent in the earlier versions of SC but were incorporated later on, when Golog
was defined. However, Golog is not a logic, but an imperative programming
language based on SC. It inherits from SC the limitations regarding hypothetical
reasoning and the ability to easily define effects based on different preconditions.

To summarize, T RPAD offers a more modular, succinct, and clear way of
specifying action preconditions and effects in the form of PADs. It gracefully
supports hypothetical tests, including hypothetical actions, that are very useful
in many scenarios, such as preventing undesired executions. It is worth noting
that T RPAD does not require foundational axioms of SC and states do not occur
as arguments of actions or of fluents, unlike situations in SC. All these features
coexist within a single logical language with a single unifying model and proof
theory; T RPAD does not resort to an external imperative language to provide
action composition and other basic features.

Fluent Calculus and Flux [76, 62]. The Fluent Calculus (FC) deviates
from SC by introducing states instead of situations and by specifying the effects
of actions using action-based state update axioms (as opposed to SC’s successor
state axioms). These axioms also take care of the inertia laws. As in SC, FC
theories need a set of foundational axioms. FC also has Flux, a high-level pro-
gramming language. Like Golog, it is not a logical language, but an imperative
language that operates with logical statements. FC allows nondeterministic ac-
tions, looping actions, and defined fluents. In that sense FC is closer to T RPAD

than SC. However, FC (and Flux) offer concurrent actions which is lacking in
T RPAD.

On the other hand, T RPAD allows complex hypothetical tests including hy-
pothetical actions, complex actions, a simple and modular way of expressing the
laws of inertia, and it does not require a complex set of foundational axioms or
an external non-logical language.

Event Calculus [51]. Event calculus (EC) is a methodology for specifying
actions in logic programming. It includes predicates for describing the initial
situation, the effects of actions, and for specifying which fluents hold at what

92 Chapter 4. Modeling Action Languages with T RPAD

times. The event calculus solves the frame problem in a way that is similar to the
successor state axiom but relies on non-monotonic aspects of logic programming
(unlike SC, which is completely first-order). It is capable of representing a
variety of features present in T RPAD, like defined fluents, actions with non-
deterministic effects, compound actions. It also has some features that are
not present in T RPAD, like parallel actions. However, EC does not support
hypothetical actions and recursion. As in SC, fluents have a time point as an
argument, this together with the successor state axioms make it is harder the
combination of this formalism with Ontologies

In summary, T RPAD offers a powerful combination of features for action rep-
resentation most of which are not present in any one of the other systems. These
include recursion, non-determinism, compound and partially defined actions, hy-
pothetical reasoning, forward and backward reasoning in time, and sound and
complete proof theory. Nevertheless, T RPAD does not completely subsume any
of the other systems discussed in this chapter, for it does not support concur-
rency and interloping partial action definitions.

4.6 Considering T RPAD with default negation

One of the main limitation that T RPAD has with respect to these action lan-
guages is that T RPAD does not allow interloping action definitions. However,
as we have seen in Section 3.8, when we extend T RPAD with default negation
we can lift this restriction and strongly increase the expressive power of T RPAD.
The exact comparison of the expressive power of T RPAD with default negation
and Situation Calculus, Event Calculus, Fluent Calculus, C and ALM is a topic
for future research.

4.7 Summary of the Contributions

In this chapter we explored and compared two expressive formalisms for reason-
ing about actions: T RPAD (without default negation) and L1. We have shown
that these formalisms have different capabilities and neither subsumes the other.
Nevertheless, we established that a large subset of L1 [8] can be soundly repre-
sented in T RPAD and that the LP reduction of that subset is logically equivalent
to the corresponding subset of T RPAD. We also compared the two logics in the
domain of action planning and showed that T RPAD has a significant advantage
when it comes to planning under constraints. We sketched as well the relation
between T RPAD with other action languages: C [36], and ALM [46], Situation
Calculus and Golog [48, 71, 56], Fluent Calculus and Flux [76, 62], and Event
Calculus [51].

4.7. Summary of the Contributions 93

Another interesting aspect of T RPAD (without default negation) is that it is
based on a monotonic logic—unlike all the above approaches.

Finally, we briefly discussed how T RPAD with default negation is related to
the action languages mentioned above. In particular, we pointed out that with
default negation we can remove one of the main limitations that T RPAD has
with respect to the other action languages: interloping actions.

Chapter 5
Modeling Production Systems

Now it happens that turtles are
great speed enthusiasts, which is
natural. The esperanzas know
that and don’t bother themselves
about it. The famas know it, and
make fun of it. The cronopios
know it, and each time they meet
a turtle, they haul out the box of
colored chalks, and on the
rounded blackboard of the turtle’s
shell they draw a swallow.

Julio Cortazar
Historias de Cronopios y de Famas

In this chapter we explore how to combine production systems (PSs) and
Description Logics ontologies and how to give a declarative semantics to the
combination of production systems and rule-based ontologies.

Production systems are one of the oldest knowledge representation paradigms
that are still popular today. Production systems are widely used in biomedi-
cal information systems, to enforce constraints on databases, to model business
processes, accounting, etc.

Such systems consist of a set of production rules that rely on forward chain-
ing reasoning to update the underlying database, called working memory. Tra-
ditionally, PSs have had only operational semantics, where satisfaction of rule
conditions is checked using pattern matching, and rule actions produce assertion
and deletions of facts from the working memory.

Informally, given a working memory, the rule interpreter applies rules in
three steps: (1) pattern matching, (2) conflict resolution, and (3) rule execution.

95

96 Chapter 5. Modeling Production Systems

In the first step, the interpreter decides—typically using the RETE algorithm
[32]—for each rule r and for each variable substitution S whether r can be
applied in the working memory using S. This step returns all pairs (r,S) such
that r can be applied using S; this set is called the conflict resolution set. In
step (2), the interpreter chooses zero or one pair from the conflict resolution
set; in case the set is empty or no pair is chosen, the system terminates. In the
last step, the working memory is updated following the additions and removals
in the action part of the selected rule. The interpreter then starts again with
step (1).

PSs syntax and semantics have been standardized as W3C’s Production Rule
Dialect of the Rule Interchange Format (RIF-PRD) [80]. The RIF-PRD speci-
fication has a number of limitations, however. First, it omits certain important
primitives that are found in many commercial production systems such as IBM’s
JRules[49]. The FOR-loop and the while-loop constructs are examples of such
an omission. Second, RIF-PRD still does not integrate with ontologies [6, 42].
Here, by ontology we mean a formal representation of a domain of interest,
expressed in terms of concepts and roles, which denote classes of objects and
binary relations between classes of objects, respectively.

5.0.1. Example. To illustrate the need for ontology integration, consider a set
of PSs that keeps a number of clinical databases that are compliant with the
health insurance regulations. The clinical record of each patient together with
other data must be accessible by all the clinics in the network. This needs
a shared vocabulary that, in this case, is defined in a shared DL ontology.
However, each PS can have extra concepts outside the ontology, which are meant
for local use only. The following production rules state that (i) if a doctor D
requests a DNA test T to be performed for patient P , then the system records
that P is taking the test T ; and (ii) patients getting a DNA test must not be
considered unhealthy.

r1 : Forall D,P, T : if requested(D,P, T) ∧ dnaT (T) then Assert(takesT (P, T))
r2 : For P, T : takesT (P, T) ∧ dnaT (T) do Retract(neg healthy(P))

The DL ontology that defines the shared concepts and implements different
constraints is as follows

flu v neg healthy dnaT v neg virusT ∃takesT .neg virusT v healthy

The DL axioms say that a patient with a flu is not a healthy patient, that DNA
tests do not search for viruses, and that if a person is taking a test not related
with any virus disease, then we can conclude that she is healthy. �

The Forall construct in r1 should not be confused with the For construct
in r2. The former is just a way RIF-PRD declares variables used in the body

97

of a rule. The latter is a FOR-loop extension found in commercial systems, but
not in RIF-PRD.

Note that in the ontologies one can have both neg - and ¬-literals, while
T RPAD uses neg - and not -literals instead. This is because logic programming
rules cannot use classical negation, while ontologies do not use default negation.

The complexity of the regulations in our example makes it difficult to de-
termine whether executing a production rule leaves the database in a compliant
state. Suppose we have the following initial database

WM0 = {requested(Smith,Laura, pcr), flu(Laura), dnaT (pcr)}

This example raises several question. Three of the most relevant ones are:

• How do we check if a rule condition holds in WM0? In traditional PS
semantics, WM0 is viewed as a unique model in which we can check the
satisfaction of formulas. However, under DL semantics, WM0 would be
seen as theory (ABox) that together with the TBox has a possibly infinite
set of models, and thus entailment is needed.

• How do we interpret the retraction of an atom as stated in rules r1 and r2?
In traditional PS semantics, to retract an atom is equivalent to changing
the truth value of a fact from true to false since there is a unique model.
It is a simple operation that is achieved by removing the fact from the
working memory. In DL to retract a fact that is entailed by the knowledge
base or to enforce the knowledge base to entail a fact to be false, is a
complex problem that cannot always be solved [58, 26]. In particular, how
do we interpret the retraction executed by r2, where P is instantiated with
Laura, given that neg healthy(Laura) is inferred by the ontology?

• What do we do when an inconsistency arise? In traditional PSs working
memories contain only positive atoms and since rules can only assert and
retract facts, there is no room for inconsistencies. Clearly, this does not
hold anymore once we allow negative facts and ontologies. In particular,
how do we treat the inconsistency that results after execution of rule r1 in
WM0? (Observe that in the state resulting from execution of r1 in WM0

we can infer healthy(Laura) and neg healthy(Laura)).

To answer these questions we need to define a precise semantics (both model-
theoretic and computational) to the combination of rules, ontologies, and pro-
duction systems.

Our contribution in this chapter is two-fold: (i) a new semantics for produc-
tion systems augmented with DL ontologies that includes looping-rules, and
can handle inconsistency; (ii) a sound embedding of the combination of PS and

98 Chapter 5. Modeling Production Systems

rule-based ontologies into T RPAD which provides a model-theoretic semantics
to the combination;

Our formalization is significantly more general than RIF-PRD or other ex-
isting formalizations of production rules in that it supports wider ontology inte-
gration and covers important extensions that exist in commercial systems such
as the aforesaid FOR-loop.

This work continues the line of research started in [25, 72], but here we target
a more complex and standard definition of production systems.

This chapter is organized as follows. Section 5.1 presents the necessary
background on Description Logic needed to understand this chapter. Section 5.2
briefly surveys previous results on the combination of PS and ontologies, and
on the reduction of PSs to formalisms with model-theoretic semantics. Section
5.3 introduces an operational semantics for production systems augmented with
DL ontologies. Section 5.4 provides a reduction from the semantics proposed
here to T RPAD and presents soundness results for this reduction. Section 5.5
concludes the chapter.

5.1 Background on Description Logic

In this Section we briefly review the basic notions from Description Logic (DL)
that we will use in this chapter. Details can be found in [6].

Description Logic is a family of knowledge representation formalisms that
provide a syntax and a model-theoretic semantics for a compact representation
of information.

In DL, the domain of interest is modeled by means of concepts, that rep-
resents sets of objects, and roles, that are binary relations between objects.
Complex concepts and roles can be obtained from atomic ones using suitable
constructs.

A DL knowledge base (KB) has two parts: the TBox, with terminological
knowledge, which consists of a number of class definitions, and the ABox, which
consists of assertions about actual individuals.

Concept axioms in the TBox are of the form C v D (meaning the extension
of C is a subset of the extension of D; D is more general than C) or C ≡ D
(where C ≡ D is interpreted as C v D and D v C) with C and D (possibly
complex) descriptions. Given a TBox axiom of the form C v D, the concept C
is called the body, and D is called the head of the axiom.

Descriptions and TBox axioms can be understood as formulas of first-order
logic with one free variable and closed universal formulas. For example, the de-
scription Au¬Bu∃R.C corresponds to the formula A(x)∧¬B(x)∧∃y.(R(x, y)∧
C(y)). Therefore, the semantics of DL can be given by its translation to FOL.
Details can be found in [6].

5.1. Background on Description Logic 99

In this chapter we will use DLs that can be embedded into Logic Program-
ming (LP). In recent years, the relationship between DLs and LP has attracted
much interest and several LP-expressible DLs have been proposed [45, 63, 64,
28, 53, 41]. In particular, [41] defines a class of DLs called Datalog-rewritable
DLs. This class is interesting in our setting because reasoning with DLs in such
a class can be reduced to reasoning with logic programming, more precisely,
with Datalog programs [2]. See Section 2.2 for further details on LP.

5.1.1. Definition. [Datalog-rewritable] A DLD is Datalog-rewritable if there
is a transformation dtg from D to Datalog programs such that for any knowledge
base (T ,A) in D, where T is a TBox and A is an ABox, the following holds:
For any concept or role name Q, and an individuals ~i in (T ,A),

(T ,A) |= Q(~i) iff dtg((T ,A)) |= Q(~i)

We say that dtg is modular if

dtg((T ,A)) = dtg(T)∪ dtg(A) �

One Datalog-rewritable DL is LDL+ [41]. For concreteness, in Section 5.3 we
will work with this DL, but our results do not depend on a particular choice of
a Datalog-rewritable DL.
LDL+ is defined by restricting the shape of the axioms in the TBox, as

shown in Figure 5.1. Further details and a reduction to Datalog can be found
in [41].

An LDL+ KB is a pair (T ,A), where T is a finite TBox and A is a finite
ABox such that

• T is a set of terminological axioms of the form C v D, where C is a body
concept and D is a head concept; and role axioms E v F , where E is a
basic role and F is a head role.

• A is a set of assertions of the form D(o) and F (o1, o2) where D is a head
concept and F is a head role.

5.1.2. Example. [41] Suppose we have the following knowledge base (T ,A):

T =

{
≥ 2PapersToRev v OverL
OverL v ∀Superv+.OverL

A =

{
Superv(a, b)
Superv(b, c)

The first two axioms say that someone with more than two papers to review is
overloaded and that an overloaded person causes all the supervised persons to be
overloaded as well. The symbol + over the role Superv stands for the transitive
closure of the role. The statements in the ABox defines the supervision hierarchy.
�

100 Chapter 5. Modeling Production Systems

Body Roles

E1, E2 → P (Role name)
E−1 (inverse)
E1 ◦ E2 (Sequence)
E+

1 (Transitive Closure)
E1 u E1 (Conjunction)
E1 t E2 (Disjunction)
>2 (Top)
{o, o} (Nominals)

Head Roles

F1, F2 → P (Role name)
F−1 (inverse)
F1 u F2 (Conjunction)
>2 (Top)

Body Concepts

C1, C2 → A (Concept name)
∃E1.C1 (Existential Restriction)
≤ nE1.C1 (AtLeast Restriction)
C1 t C2 (Disjunction)
C1 u C2 (Conjunction)
{o} (Nominals)
> (Top)

Head concepts

D → C1 (Basic Concept)
∀E1.C1 (Universal Restriction)

Figure 5.1: LDL+ Syntax

5.2. Related Work 101

We conclude this brief introduction of LDL+ with a review of its relationship
to OWL 2 fragments [18].

• OWL 2 EL. This fragment correspond to the DL EL++[5]. This frag-
ment and LDL+ do not subsume each other. Not all EL++ axioms can be
expressed in LDL+ but those that do not contain ⊥, concrete domains,
and existential quantification in axioms’ right side. On the other hand,
LDL+ has many constructs that EL++ does not allow: number restric-
tions, inverse, general sequence of roles, role conjunction, role disjunction,
etc.

• OWL 2 QL. This fragment correspond to the DL-Lite family. Again, this
fragment neither subsumes nor is subsumed by LDL+. DL-Lite axioms
that have no negation and existential quantification on the right side are
also axioms in LDL+, but LDL+ has constructs that are not expressible
in DL-Lite, such as role sequence.

• OWL 2 RL. This fragment is a strict subset of LDL+.

5.2 Related Work

In this section we compare our approach with other literature on the declarative
semantics for production systems and on the operational and declarative seman-
tics for the combination of PS and ontologies. The work described in [72, 25]
provides an operational and model-theoretic semantics to the combination of
PS and ontologies. The model-theoretic semantics is given by an embedding
of PSs into fix-point logic. However, they cannot handle looping rules, their
semantics cannot handle inconsistencies, their interpretation of retraction of DL
facts is not intuitive since a fact can remain true after being deleted, and their
reduction to a declarative formalism is considerably more complex than the one
presented here. In [55, 85], the goal is to devise languages for unifying some
aspects of active rules, logic rules, and production systems. They do not deal
with considerably more complex standard languages such as production systems
augmented with ontologies and looping rules. In particular, [55, 85] do not show
how to embed production systems into those languages, although they provide
some examples showing how typical production rules can be expressed in their
language. In [70] the authors only allow a very restricted type of production
systems: stratified PS. Such PS are much weaker that the ones formalized here,
and again, they do not consider ontologies. In addition, they do not tackle the
problem of the integration with ontologies. In [22, 9], the authors reduce the
semantics of PS to logic programming (LP). Their reduction is considerably
more complex and less compact than ours—it results in an infinite number of

102 Chapter 5. Modeling Production Systems

rules. In addition, they use stable models semantics which has much higher
computational complexity than the well founded semantics used here. Given
the complexity of such a reduction, the proposed integration with LP ontologies
is not ideal, since the ontology needs to be transformed with state arguments
and auxiliary predicates. In addition, neither of them allow looping rules. Fi-
nally, [52] presents a new formalism that combines some aspects of logic rules
and production rules. However, negation in rule conditions1 and looping rules
are disallowed. Furthermore, their embedding into Horn Logic is less clear and
compact than our embedding in T RPAD.

5.3 Combining Production Systems and Ontologies

In this section we propose a new semantics for the combination of production
systems and arbitrary DL ontologies. This approach follows the outline of [72],
but includes looping rules, it can handle inconsistencies produced by the system,
and it gives a more intuitive semantics to the retraction of DL facts.

Syntax

The alphabet of a language LPS for a production system is defined the same way
as in the case of T R except that now the set of all predicates P is partitioned
into two countably infinite subsets, PPS and PDL. The latter will be used to
represent predicates occurring only in the ontology. A term is either a variable
or a constant symbol and, to avoid unnecessary distractions, unnecessary dis-
tractions, we will leave out the various additional forms allowed in RIF, such as
frames and the RIF membership and subclass relations (o#t, t##s). However,
they can easily be added without increasing the complexity of the problem.

5.3.1. Definition. [Atomic Formulas] Let p ∈ P be a predicate and t1, . . . , tn
be terms. An atomic formula is a statement of the form p(t1 . . . tn). �

A literal is either an atom, a formula of the form neg f where f is a PDL-atom,
or a formula of the form ¬f where f is a PPS-atom.

5.3.2. Definition. [Condition Formula] A condition formula φ has one of
the following forms:

• a literal l,

• φ1 ∧ φ2, where φ1 and φ2 are condition formulas.

1 The authors informally claim that negation could be added, but they do not provide
formal details.

5.3. Combining Production Systems and Ontologies 103

• φ1 ∨ φ2, where φ1 and φ2 are condition formulas. �

Observe that all the rule conditions in Example 5.0.1 are condition formulas.
An essential feature of production systems is the ability to perform actions

such as insertion and deletion of atoms. We now define the concrete actions for
accomplishing that.

5.3.3. Definition. [Atomic Action] Let p(~c) be a literal. An atomic action
is a statement that has one the following forms:

• assert(p(~c)): Adds the literal p(~c) to the working memory

• retract(p(~c)) :

if p ∈ PPS Removes the atom2p(~c) from the working memory
if p ∈ PDL Enforces the literal p(~c) to be false in the working

memory �

Beside these elementary actions, RIF also provides actions to change or delete
objects and properties. Such actions can be treated similarly to FOR-rules below
or as sequences of simpler actions, so we leave them out as well.

5.3.4. Definition. [Production System] A Production System, PS, is a tuple

PS = (T , L, R)

such that

• T is a DL ontology (TBox) whose predicates belong to PDL;

• L is a set of rule labels, and

• R is a set of rules, which are statements of one of the following forms3

IF-THEN Rule: r : Forall ~x : if φr(~x) then ψr(~x) (5.1)

FOR Rule: r : For ~x : φr(~x) do ψr(~x) (5.2)

where

• r ∈ L is the above rule’s label,

• φr is a condition formula in L with free variables ~x,

• ψr(~x) is a sequence of atomic actions with free variables contained in ~x.�

2Negative literals with predicate symbols in PPS cannot occur in the working memories.
See Definition 5.3.5.

3 To avoid a misunderstanding, recall that the Forall construct is just a RIF-PRD syntax
for declaring variables; it does not indicate a loop. In contrast, the For-do construct specifies
a loop; it is found only in commercial PS, like JRules.

104 Chapter 5. Modeling Production Systems

Operational Semantics

We now turn to the operational semantics of the combination of PS with ontolo-
gies. In a PS, two different constants represent two different domain elements
(unique name assumption). In addition, production systems assume that each
constant symbol is also a symbol in the domain of discourse, i.e., they deal with
Herbrand domains.

It is also worth noting that the semantics presented in this section does
not depend on the specifics of the DL associated with production systems. For
concreteness, one can think of LDL+ [41].

5.3.5. Definition. [Working Memory] A working memory, WM, for a PS
language L is a disjoint union

WM = WMPS]WMDL

where WMPS is a set of ground atoms that use predicate symbols from PPS and
WMDL is a set of ground literals that use predicate symbols from PDL. �

5.3.6. Definition. [T -structure] Let T be a DL TBox. A T -structure, I, for
a PS language L has the form

M = (WMPS]WMDL]EDL, σ)

where WM = WMPS]WMDL is a working memory, EDL is a set of PDL-literals,
σ is a variable assignment, and (WMDL]EDL, σ) is a model of T . �

We say that (WM, σ), where WM is a working memory, is a prestructure.

5.3.7. Example. Consider Example 5.0.1. The two disjoint sets composing the
initial working memory WM0 are as follows:

WM0PS = {requested(Smith,Laura,pcr)}
WM0DL = {flu(Laura), dnaT (pcr)}

In addition, we can build up a T -structure, M, by pairing any arbitrary as-
signment σ with WM0 together with {neg healthy(Laura)}. That is, M =
(WM0] {neg healthy(Laura)}, σ). �

5.3.8. Definition. [Satisfaction] A T -structureM = (WMPS]WMDL]EDL, σ)
satisfies a literal l, denoted M |= l, iff

• if l is a PPS-atom then lI ∈WMPS

• if l is a PDL-literal then WMDL]EDL |= lI

5.3. Combining Production Systems and Ontologies 105

If φ is a formula of the form ¬φ1, φ1∧φ2, φ1∨φ2 then we defineM |= φ as usual
in FOL. A formula φ holds in a prestructure (WM, σ) relative to an ontology
T , denoted T , (WM, σ) |= φ, iff M |= φ for every T -structure of the form

M = (WM]EDL, σ)

(That is, WM and σ are fixed but the EDL varies.) �

A prestructure is T -consistent if there is a T -structure with the same
working memory and variable assignment, i.e., (WM] EDL, σ) that does not
entail f and neg f for any atom f . Note that in such a T -structure, if neg f
is true then ¬f is also. A working memory is T -consistent if it is part of a
T -consistent prestructure.

5.3.9. Definition. [Atomic Transition] Let (WM, σ) be a prestructure, t1, t2
be terms, and α be an action. We say that there is an α-transition from

the prestructure (WM, σ) to the prestructure (WM′, σ), denoted (WM, σ)
α
�

(WM′, σ), iff

• if α = assert(p(t)) then WM′ = (WM ∪ {p(tσ)}) \ {neg p(tσ)}

• if α = retract(p(t)]) then

if p ∈ PPS WM′ = WM \ {p(tσ)}
if p ∈ PDL WM′ = (WM∪

{neg p(tσ)}) \ {p(tσ)}

where tσ is σ(t) if t is a variable and it is t if t is a constant. �

5.3.10. Definition. [Compound Transition] Let (WM0, σ) be a prestructure
and α1 · · ·αn be atomic actions. We write

(WM0, σ)
α1...αn
� (WMn, σ)

iff there are prestructures (WM1, σ) . . . (WMn−1, σ) such that

(WM0, σ)
α1
� (WM1, σ)

α2
� (WM2, σ)

α3
� . . .

αn−1
� (WMn−1, σ)

αn
� (WMn, σ) �

If, for some σ and n ≥ 1, there is a transition (WM0, σ)
α1...αn
� (WM′, σ)

between prestructures then we will also write WM0
α1...αn
� WM′.

Since actions may introduce inconsistencies with respect to the ontology, we
need to define the notion of a consistent result of applying an action. Let α be
an action and suppose that

WM
α
�WM′

106 Chapter 5. Modeling Production Systems

is a transition among prestructures such that WM is T -consistent and WM′ is
not. One way to define a consistent result of applying an action to WM is to
take a maximal subset of WM′ that belongs to some T -consistent prestructure.
However, a maximal subset might not be unique. A workaround here is to take
the intersection of all the possible consistent results. This approach is called
When in Doubt Throw it Out (WIDTIO) [81]. This form of belief revision is
in line with traditional ontologies and it has been also used in the context of
evolution of DL knowledge bases [19]. It is worth noticing that here we are using
a simple notion of belief revision for ontologies, and we are not attempting to
make original contributions in this area

5.3.11. Definition. [Consistent Result] Let WM and WMn be working mem-
ories, such that WM is T -consistent, and α be an action. Suppose that there is
a transition of the form

WM
α
� ŴM

and ŴM is not T -consistent. Let M be the set of all maximal subsets of ŴM
that contain ŴM \ WM and are T -consistent. We define the T -consistent
result of applying α to WM as

ŴM
cons

=
⋂

WMmax∈M
WMmax

�

5.3.12. Example. Suppose we execute r1 in WM0. We obtain the inconsistent
working memory

WM1 = {takeT (Laura,pcr), flu(Laura), dnaT (pcr), requested(Smith,Laura, pcr)}

We have two maximal consistent subsets of WM1

• WM′1 = {takeT (Laura, pcr), dnaT (pcr), requested(Smith,Laura,pcr)}

• WM′1 = {takeT (Laura, pcr), flu(Laura), requested(Smith,Laura, pcr)}
Thus, the consistent result is:

WMcons
1 = {takeT (Laura, pcr), requested(Smith,Laura,pcr)} �

5.3.13. Definition. [Consistent Transition] Let (WM0, σ) be a T -consistent
prestructure and α1 . . . αn be a sequence of actions. Suppose that we have the
following transitions:

(WM0, σ)
α1
� (WM1, σ)

α2
�, . . . (WMn−1, σ)

αn
� (WMn, σ)

5.3. Combining Production Systems and Ontologies 107

Let WMcons
i (i = 1 . . . n) be the T -consistent results of applying αi to (WMcons

i−1 , σ)
(where WMcons

0 = WM0). We define the corresponding T -consistent transi-
tion as

(WM0, σ)
α1
� (WMcons

1 , σ)
α2
�, . . . (WMcons

n−1 , σ)
αn
� (WMcons

n , σ) �

5.3.14. Definition. [Intermediate and Cyclic WM] Let (WM0, σ) be a T -
consistent prestructure and suppose r is a rule with actions α1 · · ·αn in the
head. Suppose there are working memories WM1 . . .WMn such that

(WM0, σ)
α1
� (WM1, σ)

α2
� . . .

αn−1
� (WMn−1, σ)

αn
� (WMn, σ)

In this case we say that WM0 and WMn are cycle working memories, whereas
WM1 . . .WMn−1 are intermediate working memories.4 �

Intuitively, cycle working memories are the initial and the final (resulting)
working memories, whereas intermediate working memories are the intermediate
states produced by the execution of the rule actions.

We say that a transition of the form

(WM0, σ)
α1
� (WM1, σ)

α2
� . . .

αn−1
� (WMn−1, σ)

αn
� (WMn, σ)

is non-trivial if WM0 6= WMn.
The following two definitions formalize the conflict resolution strategy for

a given rule r. We say that a rule r is eligible for execution in a working
memory WM if r’s condition holds in WM, and the working memory resulting
from applying r is consistent with the ontology. In addition, if r is an IF-THEN

rule we require that r’s action changes WM, and if r is a FOR rule we require
that r’s action is not instantiated twice with the same assignment.

5.3.15. Definition. [Fireable IF-THEN Rule] Let r be a rule of the form:

r : Forall ~x : if φr(~x) then ψr(~x) (5.3)

We say that r is fireable in a prestructure (WM0, σ) iff

1. (WM0, σ) is T -consistent.

2. T , (WM0, σ) |= φr

3. There is a non-trivial T -consistent transition of the form

(WM0, σ)
ψr(σ(~x)
� (WMn, σ)

where
α1...αn
� is defined in Definition 5.3.10.

4 RIF-PRD calls these cycle states because these are the states where cycles of rule appli-
cations begin.

108 Chapter 5. Modeling Production Systems

In this case we say that r causes transition from WM0 to WMn and denote
it as WM0

r
↪→WMn. �

5.3.16. Definition. [Fireable FOR Rule] Let r be a rule of the form:

r : For ~x : φr(~x) do ψr(~x) (5.4)

We say that r is fireable in a working memory WM0 iff

• WM0 is T -consistent.

• there are prestructures (WM0, σ0), (WM1, σ0), (WM1, σ1) . . . (WMn, σn−1)
such that there are T -consistent transitions of the form

(WM0, σ0)
ψr(σ0(~x)
� (WM1, σ0)

(WM1, σ1)
ψr(σ1(~x)
� (WM2, σ1)
...

(WMn−1, σn−1)
ψr(σn−1(~x)
� (WMn, σn−1)

(5.5)

where the following conditions hold:

1. Looping : T , (WMi, σi) |= φr for each cycle working memory, WMi

(0 ≤ i ≤ n− 1)

2. No repetitions: For each pair of prestructures (WMi, σi), (WMj , σj)
(0 ≤ i < j ≤ n− 1), we have that σi 6= σj

3. Termination: There is no assignment σ such that it produces a T -
consistent transition from WMn, and (WMn, σ) satisfies r’s condition.

In this case we say that r causes transition from WM0 to WMn and denote
it as WM0

r
↪→WMn. �

Condition 3 above says that rules are no longer fired once the system reaches
a fixpoint. This guarantees that a PS does not have trivial infinite runs.

Recall that a PS applies rules in three steps: (1) pattern matching, (2)
conflict resolution, (3) rule execution, and then it loops back to (1). So far
we have described only the steps (1) and (3). The next series of definitions
describes Step (2) and show how looping is modeled in the semantics. This
semantics does not depend on any particular conflict resolution strategy so, for
concreteness, in Step (2) we will simply randomly choose a fireable rule from
the conflict resolution set.5 Some other works [9, 25] use the same strategy.

5Recall that the conflict resolution set contains all the rules that can be fired on a given
working memory.

5.4. Production Systems in T RPAD 109

5.3.17. Definition. [Consistent Transition Graph] The transition graph,
TPS, of a production system is a directed labeled graph, whose set of nodes
is the set of all working memories. There is an edge between two nodes WM
and WM′, labeled with α, σ for some action α and variable assignment σ, iff

(WM, σ)
α
� (WM′, σ). We will use PWM to denote the set of all paths (sequences

of WMs) in the graph TPS starting at WM. �

5.3.18. Definition. [Split] Let π = WM0 . . .WMn be a path in PWM0 . A
split of π is a pair of subpaths, π1 and π2, such that π1 = WM0 . . .WMi and
π2 = WMi . . .WMn for some i (1 ≤ i ≤ n). In this case, we write π = π1 ◦ π2.
�

5.3.19. Definition. [Run] A path π in PWM0 is a run R for a production
system PS iff there are splits π = π1 ◦ · · · ◦ πn and rules r1 . . . rn such that for

each i = 1 . . . n, WMi,start
ri
↪→ WMi,end, where WMi,start is the first element in

πi and WMi,end is its last. Note that this implies that every πi is a T -consistent
transition (see Definition 5.3.13). �

We will refer to the ith cycle working memory in a run as WMi.

5.4 Production Systems in T RPAD

In this section we present the reduction of production systems augmented with
Datalog-rewritable ontologies to T RPAD. Given an alphabet LPS for a produc-
tion system PS, the corresponding language LT R of the target T RPAD formula-
tion will consist of symbols for rule labels, constants, and predicates. In addition,
LT R has the following symbols:

• the pdas add used and clean used, and for every predicate p ∈ LPS, Ins p, and
del p;

• the compound action act;

• the defined fluent inconsistent, and for every rule label r the defined fluent
fireable r ;

• the fluents inertial and used .

Intuitively, the pdas Ins p, and del p above represent the actions assert and
retract. The pdas add used and clean used, and the fluent used , are used to keep
track of the assignments that have already been used to instantiate a FOR-
production rule. The compound action act represents a generic production rule.
The defined fluent fireable r is true if the condition of the rule r holds and the
action produces no inconsistencies. The defined fluent inconsistent is true, if there

110 Chapter 5. Modeling Production Systems

is an inconsistency in the state. The fluent inertial is used to distinguish inertial
from non-inertial fluents.

Let ψ = α1 . . . αn be a sequence of atomic actions. We use ψ̂ to denote the
T R -serial conjunction ψ̂ = α̂1 ⊗ · · · ⊗ α̂n where

α̂i =

{
Ins p(t1 . . . tn) if αi = assert(p(t1 . . . tn))
del p(t1 . . . tn) if αi = retract(p(t1 . . . tn))

Let φ = f1 ∧ · · · ∧ fn ∧ l1 . . . lm be a conjunction of atoms (fi) and negative
literals (lj). Then let φ̂ denote the T R -serial conjunction φ̂ = f1 ∧ · · · ∧ fm ∧
∼ l1 ∧ · · · ∧ ∼ lm, where

∼ lj =

{
not f(~c) if lj = ¬f(~c) ∧ f ∈ PPS

neg f(~c) if lj = neg f(~c) ∧ f ∈ PDL

In the following, let PS = (T , L, R) be a production system. For simplicity
we assume that conditions in production rules are conjunction of fluent literals.
In addition, we assume we have an initial working memory, WM0, that
represents the knowledge we have about the initial state of the system. A
production system coupled with a working memory is called a configuration.

The reduction, ΛPS, of a configuration (PS,WM0) to T RPAD is a T RPAD

knowledge-base (E ,P,S) composed of the following PADs (E), rules for defined
fluents (P) and premises (S). From now on we assume that the ontology T is
Datalog-expressible (e.g., LDL+—see Section 5.1).

1. State identifiers: There is an initial state identifier d0. The rest of
the state identifiers are indexed by sequences of actions that need to be
applied to d0 in order to reach those other states. That is, they have the
form d0,α1,...,αn , where n ≥ 0 and each αi is a ground instance of a T RPAD’s
partially defined action add used, clean used, Ins p, or del p, for some p.

2. Ontology T : P contains all the rules from the Datalog rendering of T .

3. Initial Database: The premises below characterize the content of the
initial working memory WM0.

• For each atomic literal p(t1, . . . , tn) in WM0

d0 B p(t1, . . . , tn) ∈ S
d0 B inertial(p(t1, . . . , tn)) ∈ S6

4. Frame Axioms: The following frame axioms encode the laws of inertia.
In addition, they take care of the actual “removal” of LPS atoms from the
working memory, and the cleaning of the used assignments.

6 We could have written this as inertial(p, t1, . . . , tn) to avoid the appearance of being second
order or that the use of function symbols here is essential.

5.4. Production Systems in T RPAD 111

• For each action αq involves assertion or retraction of an atom with
predicate symbol q, where p 6= q:{

(inertial(p(~X)) ∧ p(~X)) ⊗ αq(~Y)⊗ not inconsistent →
α(~Y)⊗ (p(~X) ∧ inertial(p(~X)))

}
∈ E

• For each action αp involves assertion or retraction of an atom with
predicate symbol p:{

(inertial(p(~X)) ∧ p(~X) ∧ ~X 6= ~Y)⊗ αp(~Y)⊗ not inconsistent →
α(~Y)⊗ (p(~X) ∧ inertial(p(~X)))

}
∈ E

• For each predicate p
(inertial(p(~X)) ∧ p(~X))⊗ add used(~Y)→

add used(~Y)⊗ (p(~X) ∧ inertial(p(~X)))

(inertial(p(~X)) ∧ p(~X) ∧ p 6= used)⊗ clean used→
clean used⊗ (p(~X) ∧ inertial(p(~X)))

 ∈ E
5. Actions: The following rules encode the actions assert and retract in
T RPAD:

• Insert: For each predicate p ∈ LPS (whether in PDL or PPS):{
Ins p(t1, . . . , tn)→ Ins p(t1, . . . , tn)⊗

(p(t1, . . . , tn) ∧ inertial(p(t1, . . . , tn)))

}
∈ E

• Retract: For each predicate p ∈ PDL,{
del p(t1, . . . , tn)→ del p(t1, . . . , tn)⊗

(neg p(t1 . . . tn) ∧ inertial(neg p(t1 . . . tn)))

}
∈ E

Recall that the effect of the pda del p for PS atoms is given by
the interaction with the frame axioms. For instance, if applying
deldnaT (pcr) in d1 results in a state d2, it holds that d2 is equal
to d1 except for dnaT (pcr), which is not carried to d2 by the frame
axioms. This is equivalent to remove dnaT (pcr) from d2.

6. Production rules: The following rules encode the production rules.

• For each IF-THEN-rule of the form “r : Forall ~x : if φr(~x) then ψr(~x)”

r ← fireable r(~X)⊗ ψ̂r(~X) ∈ P

112 Chapter 5. Modeling Production Systems

• For each FOR-rule of the form “r : For ~x : φr(~x) do ψr(~x)”

r ← fireable r(~X)⊗ ψ̂i(~X)⊗ add used(~X)⊗ loop r
loop r ← r

loop r ← (not∃ ~X : fireable r(~X))⊗ clean used

 ∈ P

where not∃ ~X : fireable r(~X) above is a shorthand for not p′ such that p′ is
a new predicate defined as p′ ← fireable r(~X).

7. Auxiliary Actions and Premises:

• Run-Premises: For each pda α and a sequence ξ of Ins/del/add used/clean used
actions, the set of premises S contains the following run-premise:

dξ
a
 dξ,a

For example, d0,Ins p(c)
Insq(d)
 d0,Ins p(c),Insq(d).

• Inconsistency : For each predicate p ∈ LPS, P contains a rule of the
form:

inconsistent ← p(~X), neg p(~X)

• Adding used assignments:{
add used(~Y)→ add used(~Y)⊗ used(~X)

}
∈ E

• Fireability :

– If r is an IF-THEN rule

{
fireable r(~X)← φ̂r(~X) ∧

∨
p∈P inertial(p(Y)) ∧

(♦ψ̂r(~X)⊗ not inconsistent ∧ not inertial(p(Y)))

}
∈ P

– If r is an FOR rule{
fireable r(~X)← φ̂r(~X) ∧ not used(~X)) ∧ (♦ψ̂r(~X)⊗
not inconsistent)

}
∈ P

Observe that in the definition of fireable r for IF-THEN rules, we also
require that the effect of the action must produce a change, in par-
ticular in the rule above we require that it must retract some inertial
fact. We omit the analogous definition requiring that the change
consists of inserting a new inertial fact.

5.5. Summary of the Contributions 113

• Random choice of action: Suppose {r1 . . . rn} = L

act← r1
...
act← rn

 ∈ P

To run k rules of the production system we use the transaction:

?- (d0) act⊗ · · · ⊗ act︸ ︷︷ ︸
k

5.4.1. Theorem (Soundness). Let (E ,P,S) be the T RPAD embedding of a PS
configuration. Suppose

E ,P,S,d0 . . .dk |= act⊗ · · · ⊗ act︸ ︷︷ ︸
m

Then there are working memories WM1 . . .WMm, and rules r1 . . . rm such that

WM0
r1
↪→WM1
...

WMm−1
rm
↪→WMm

16. Proof. See appendix G. �

5.5 Summary of the Contributions

In this chapter we proposed a new semantics for the combination of production
systems with arbitrary DL ontologies. Unlike previous approaches [72, 25, 22,
9, 55, 85], the semantics presented here supports extensions, like the FOR-loops
or while-loops, that are not included in RIF-PRD, but are found in commer-
cial production systems such as IBM’s JRules[49]. In addition, our approach
can handle inconsistencies produced by the interaction of rule actions and the
ontology.

We also defined a sound embedding of such semantics, restricted to rule-
based DL ontologies, into T RPAD. This reduction gives a declarative semantics
to the combination, and is considerably simpler and compact that other ap-
proaches, including [72, 55, 85, 22, 52].

Chapter 6
Conclusions

Dad : What are you watching,
Mafalda?
Mafalda: The fight.
Dad : But... it’s a soap opera!
What fight are you talking about?
Mafalda: The writer’s fight. It’s
fascinating seeing the writer’s
struggle to escape the clutches of
intelligence.

Joaqúın Salvador Lavado (Quino)
Mafalda

In this thesis we extended Transaction Logic and made it suitable for rea-
soning about partially defined actions. We illustrated the power of the language
for complex reasoning tasks involving actions and gave a sound and complete
proof theory for that formalism. We showed that T RPAD has a great deal of
sophistication in action composition, enabling hypothetical, recursive, and non-
deterministic actions. In particular, compared with other actions languages like
[39, 35, 8, 17, 38, 16], T RPAD supports more general ways of describing actions
and can be more selective in when and whether the fluents are subject to the
laws of inertia. Moreover, we proved that T RPAD generalizes Horn-T R –. This
implies that the frame axioms proposed in this thesis behave as expected in the
relational case. That is, they correctly model the inertia laws.

We also showed that, when all partially defined actions are definite, reasoning
in T RPAD can be done by a reduction to ordinary logic programming. This
last contribution provides an easy way to implement and experiment with the
formalism, although a better implementation should be using the proof theory
directly, similarly to the implementation of the serial-Horn subset of T R in

115

116 Chapter 6. Conclusions

FLORA-2 [50].

This work continues the line of research started in [10], which, however, was
targeting a different fragment of T R. It did not provide a complete proof theory
or a reduction to logic programming. It also did not consider premise statements
and thus could not be used for reasoning about partially defined actions without
further extensions.

To boost the non-monotonic capabilities of T RPAD, we extended T RPAD with
default negation (a.k.a. negation as failure). Default negation allows a logic
system to conclude the negation of any atom that the system unsuccessfully
finishes exploring all possible proofs. That is, if we fail to prove that a fact is
true, by default, we assume it is false. Default negation has become a central
ingredient in the design of logic programming languages, databases [77, 37],
truth maintenance system [47], etc. We showed how default negation can be
used to simplify the axioms of inertia, and lift a restriction we have to impose
on T RPAD specifications without default negation.

We also explored and compared two expressive formalisms for reasoning
about actions: T RPAD (without default negation) and L1. We showed that
these formalisms have different capabilities and neither subsumes the other.
Nevertheless, we established that a large subset of L1 can be soundly represented
in T RPAD and that the LP reduction of that subset is logically equivalent to the
corresponding subset of T RPAD. We also compared the two logics in the domain
of action planning and showed that T RPAD has a significant advantage when
it comes to planning under constraints. Finally, we briefly compared T RPAD

with other action languages, Situation Calculus and Golog, Fluent Calculus and
Flux, and Event Calculus, ALM and C. Uniquely among these formalisms
T RPAD supports powerful ways of action composition.

As an application, we studied how to use T RPAD to combine production
systems extended with lopping rules and ontologies. Traditional PSs consist
of a set of production rules that rely on forward chaining reasoning to update
the underlying database, called working memory. Traditionally, PSs have had
only operational semantics, where satisfaction of rule conditions is checked using
pattern matching, and rule actions produce assertion and deletions of facts from
the working memory. Since there is no semantics available for the combination
of PS with looping rules and ontologies, first we proposed a new—operational—
semantics such combination. This semantics continues the line of research of
[72], which, however, was targeting a more restricted and not standard definition
of production systems. For instance, [72] did not consider looping-rules and it
could not handle inconsistencies produced by the system. Finally, we presented
a sound embedding of such semantics into T RPAD, providing in this a declarative
semantics to PSs augmented with rule-based ontologies.

Finding decidable fragments of T RPAD for which termination of reasoning is
guaranteed will be the focus of our future work.

Chapter 6. Conclusions

The contributions provided in this thesis have a strong impact in the subfield
of Artificial Intelligence dedicated to reasoning about actions. We expect these
results to find applications in intelligent agent systems, semantic web services,
question answering systems, and other areas.

117

Appendix A
Soundness and Completeness Proofs
of the Inference System F

In this Appendix we prove soundness and completeness of the inference system
F developed in Section 3.3. For simplicity we present a ground version of the
inference system. Lifting to the non-ground case is done in a standard way (cf.
[11]).

Soundness of F

This appendix contains proofs of soundness of the inference system F developed
in Section 3.3. We assume that all transactions are serial goals, that the trans-
action base is a set of serial Horn rules and PADs, and that the set of premises
are state- and run-premises defined in Definition 3.1.1. For convenient reference
we reproduce the axioms and inference rules of system F below.

A.0.1. Definition. [Inference System F] Let P be a transaction base and S
a set of premises. The inference system F consists of the following axioms and
inference rules, where d, d1, d2, and so on, denote database states.

Axioms:

1. No-op: P,S,d ` ()

Inference rules: In the rules below, a, and α are literals, and φ, ψ, and bi
(i = 1, 2, 3, 4) are serial goals.

1. A subset of Horn inference rules from [11, 12]:

119

Appendix A

(a) Applying transaction definitions:

a← φ ∈ P
P,S,d1 . . .dn ` φ⊗ ψ
P,S,d1 . . .dn ` a⊗ ψ

(b) Hypothetical operations:

P,S,d,d′1, ...,d′n ` β
P,S,d,d1, ...,dm ` γ

P,d,d1, ...,dm ` ♦β ⊗ γ

2. Premise rules: Suppose d1
α
 d2 or dB f is a premise in S. Then

d1
α
 d2 ∈ S

P,S,d1d2 ` α
dB f ∈ S
P,S,d ` f

3. Forward Projection: Suppose α is a partially defined ground action term.
Then

b1 ⊗ α⊗ b2 → b3 ⊗ α⊗ b4 ∈ P
P,S,d1 ` b1
P,S,d2 ` b2

P,S,d1d2 ` α
P,S,d1 ` b3 and P,S,d2 ` b4

4. Sequencing:
P,S,d1 . . .di ` φ
P,S,di . . .dn ` ψ
where 1 ≤ i ≤ n

P,S,d1 . . .dn ` φ⊗ ψ

5. Decomposition: Suppose φ and ψ are serial conjunctions of literals and
hypotheticals. Then

P,S,d ` φ⊗ ψ
P,S,d ` φ and P,S,d ` ψ

A.0.2. Theorem (Soundness of F). If P,S,d1 . . .dn ` φ then
P,S,d1 . . .dn |= φ

To prove Theorem A.0.2, it is enough to show that every axiom and inference
rule of system F is sound. Soundness of the axioms and of the Horn inference
rules in F follows from Theorem A.2 in [11] after simple adjustments for the
existence of PADs (instead of elementary updates defined by transition oracles)
in P. Lemma A.0.3 establishes the soundness of the remaining inference rules.

120

APPENDIX A. INFERENCE SYSTEM F

A.0.3. Lemma (Inference Rules). 1. Suppose that the premise d1
α
 d2

is in S. Then P,S,d1d2 |= α.

2. Suppose that b1 ⊗ α⊗ b2 → b3 ⊗ α⊗ b4 is a PAD in P. If

P,S,d1 |= b1
P,S,d2 |= b2
P,S,d1d2 |= α

then P,S,d1 |= b3 and P,S,d2 |= b4.

3. Let φ and ψ be serial conjunctions of atoms. If, for some 1 ≤ i ≤ n,

P,S,d1 . . .di |= φ
P,S,di . . .dn |= ψ

then P,S,d1 . . .dn |= φ⊗ ψ.

4. Let φ and ψ be serial conjunctions of fluents.

P,S,d1 |= φ⊗ ψ

then P,S,d1 |= φ and P,S,d1 |= ψ.

Proof. Claim 1 follows immediately, since for every model M of (P,S) and

premise d1
α
 d2 in S, it follows by Definition 3.1.3 that M, 〈d1d2〉 |= α. There-

fore, by definition of entailment in T RPAD, we have P,S,d1d2 |= φ.

To prove Claim 2, suppose that the PAD b1 ⊗ α⊗ b2 → b3 ⊗ α⊗ b4 is in P
and the entailments in the statement of the claim hold. Let M be a model of
(P,S) such that

• M, 〈d1〉 |= b1

• M, 〈d2〉 |= b2

• M, 〈d1d2〉 |= α

Since M is also a model of b1 ⊗ α ⊗ b2 → b3 ⊗ α ⊗ b4 and the premise of that
implication holds in M, by assumption, it follows that

M, 〈d1d2〉 |= b3 ⊗ α⊗ b4
must hold. Since b3 and b4 are conjunctions of fluents and M, 〈d1d2〉 |= α, the
definition of satisfaction in TR implies

M, 〈d1〉 |= b3
M, 〈d2〉 |= b4

Since M is an arbitrary model of (P,S), we obtain P,S,d1 |= b3 and P,S,d2 |=
b4. Claims 3 and 4 follows directly from the definition of serial conjunction ⊗.
�

121

Appendix A

Completeness of F

To prove completeness of the inference system F of Section 3.3, we construct a
canonical Herbrand model of the T RPAD specification (P,S). As before, U will
be denoting the Herbrand universe of the logic language and B its Herbrand
domain. A classical Herbrand structure is a subset of B. Recall that we assume
that all transactions are serial goals, that the transaction base is a set of serial
Horn rules and PADs, and that premise statements are as in Definitions 3.1.1.

A.0.4. Definition. [Canonical Model] The canonical model of a transaction
base P and a set of premises S is a Herbrand path structure MP,S, such that

MP,S(〈d1 . . .dn〉) = {b ∈ B | P,S,d1 . . .dn ` b}

for any sequence of states 〈d1 . . .dn〉.

To justify its name, we need to show that canonical models are indeed mod-
els. The next lemma shows that MP,S is a path structure. That it is a model
follows from Theorem A.0.8, below. Recall that in T RPAD we use pdas instead
of elementary updates, so elementary updates and transition oracles of TR play
no role in our construction.

A.0.5. Lemma. Let MP,S be the canonical model of P,S. Then,

MP,S(〈d〉) |=c l for every literal l ∈ d

Proof. If l ∈ d then, by the No-op axiom and inference rule 4, P,S,d ` l. By
construction of MP,S, l ∈MP,S(〈d〉), which implies MP,S(〈d〉) |=c l. �

The following lemma is a key property of canonical models.

A.0.6. Lemma. If b is a ground atomic formula, then

MP,S, 〈d1 . . .dn〉 |= b iff P,S,d1 . . .dn ` b

Proof. By the definition of satisfaction in path structures,
MP,S, 〈d1 . . .dn〉 |= b if and only if b ∈MP,S(〈d1 . . .dn〉). By Definition A.0.4,
b ∈MP,S(〈d1 . . .dn〉) if and only if P,S,d1 . . .dn ` b. �

We now generalize the above result to serial conjunctions.

A.0.7. Theorem. Let φ be a ground serial conjunction. Then

if MP,S, 〈d1 . . .dn〉 |= φ then P,S,d1 . . .dn ` φ

122

APPENDIX A. INFERENCE SYSTEM F

Proof. Let φ have the form b1 ⊗ · · · ⊗ bk, where k ≥ 0 and each bi is a ground
atomic formula. Our proof is by induction on k. In the base case, k = 0 and
φ is the empty clause (i.e., ()). If the expression MP,S, 〈d1 . . .dn〉 |= () is true,
then n = 1, since the empty clause is true only on paths of length one. But the
sequent P,S,d1 |= () is an axiom, and the claim follows.

For the inductive case, assume the claim is true for all k such that 0 ≤ k < m.
We show that it is true for k = m. Below we use φm to denote b1 ⊗ · · · ⊗ bm−1.

MP,S, 〈d1 . . .dn〉 |= φm ⊗ bm given
MP,S, 〈d1 . . .di〉 |= φm and for some i, by

MP,S, 〈di . . .dn〉 |= bm Definition 3.1.3
P,S,d1 . . .di ` φm and P,S,di . . .dn |= bm by I. Hypothesis
P,S,d1 . . .di ` φm and P,S,di . . .dn ` bm by Lemma A.0.6
P,S,d1 . . .di ` φm ⊗ bm by Inferece Rule 4 �

A.0.8. Theorem. MP,S is a model of P and S

Proof. Since the proof that MP,S satisfies the Horn rules in P is very similar
to the proof of Theorem B.9 in [11], we only show that MP,S satisfies the PADs
in P and the premises in S.

Let b1 ⊗ α⊗ b2 → b3 ⊗ α⊗ b4 be a PAD in P and 〈d1 . . .dn〉 a path. If

MP,S, 〈d1 . . .dn〉 |= α
MP,S, 〈d1〉 |= b1,
MP,S, 〈dn〉 |= b2

Then by Theorem A.0.7
P,S,d1 . . .dn ` α
P,S,d1 ` b1
P,S,dn ` b2

(A.1)

and by inference rule 3 we get

P,S,d1 ` b3 and P,S,dn ` b4 (A.2)

Since b1 and b2 are classical conjunctions of fluents, by inference rule 5 we
conclude P,S,d1 ` b′1 for every atomic conjunct b′1 of b1 and P,S,dn ` b′2 for
every atomic conjunct b′2 of b2. From this and Lemma A.0.6 it now follows that

MP,S, 〈d1〉 |= b′1
MP,S, 〈dn〉 |= b′2

123

Appendix A

and thus, by the definition of ∧, that

MP,S, 〈d1〉 |= b3
MP,S, 〈dn〉 |= b4

Finally, we observe that MP,S is a model of S because every premise in S gives
rise to a sequent in F , by inference rule 2. Hence, for every premise d B f or
d1

α
 d2 in S we derive the corresponding sequent P,S,d ` f or P,S,d1d2 ` α.

Therefore f ∈MP,S(〈d〉) and α ∈MP,S(〈d1d2〉). �

A.0.9. Corollary (Completeness of F). Let φ be a ground serial conjunc-
tion. Then

P,S,d1 . . .dn |= φ implies P,S,d1 . . .dn ` φ

Proof. Suppose that P,S,d1 . . .dn |= φ. Then:

M, 〈d1 . . .dn〉 |= φ for every model, M, of P and S
MP,S, 〈d1 . . .dn〉 |= φ since MP,S is a model of (P,S), by Theorem A.0.8
P,S,d1 . . .dn ` φ by Theorem A.0.7 �

124

Appendix B
Proof of the Reduction of Horn-T R –

to T RPAD

This appendix proves that T RPAD generalizes Horn-T R –. This implies, as a
corollary, that the frame axioms in the action theory behaves as expected in
the relational case. That is, they can model the inertia laws lying behind the
relational transition oracles. For convenient reference we will repeat the main
definitions.

B.0.10. Definition. [Relational specifications for serial-Horn
programs] A T RPAD specification (Q,S)d0 is a relational specification of a
serial-Horn program (P,D) if and only if:

Initial State for every ground base fluent-literal f such that f ∈ D, (Q,S)d0

has these premise formulas:

d0 B f
d0 B inertial(f)

Transaction Base

Q = P
∪ {insert(f)→ insert(f)⊗ f |

for every ground base fluent-literal f}
∪ {delete(f)→ delete(f)⊗ neg f |

for every ground base fluent-literal f}

Plus the action theory of Q.

125

Appendix B

Transitions for every elementary action α, and sequence r of elementary ac-
tion, S contains run-premises of the form:

d0,r
α
 d0,r,α

In addition, we assume that every ground base fluent is inertial in every
state.

B.0.11. Definition. [Correspondence of states] Let (P,S) be a T RPAD spec-
ification. Given a state identifier d in LT RPAD , let D(d) denote the following
set of database fluents in the language LT R – of Transaction Logic:

D(d) = {f | f is a ground base fluent-term such thatP,S,d |= f}

�

B.0.12. Proposition (State consistency and completeness). Let (P,D)
be a Horn-T R – program and (Q,S)d be a relational specification for (P,D) (see
Definition 3.4.6). Let α be an action, and d1,d2 be state identifiers such that
Q,S,d1 . . .dn |= α. If D(d1) is consistent then so is D(dn). If, in addition,
D(d1) is complete then so is D(dn).

Proof. The proof relies on the fact that T RPAD has a sound and complete proof
theory and proceeds by induction on the number N of steps needed to derive

Q,S,d1 . . .dn ` α (B.1)

Observe that since insert(f) and delete(f) have neither a precondition nor a
post-condition, we can disregard the following frame axioms

• Forward and Backward Disablement

• Backward Projection

• Causality

Moreover, since the only state-premises we have use d0, we can also disregard
the Backward Inertia frame axiom.

Base case: N = 1. In that case, (B.1) can be derived only by the run-
premise inference rule. Therefore (B.1) must have the form

Q,S,d1d2 ` α (B.2)

From the previous facts we know that α is either of the form insert(f) or of
the form delete(f). For concreteness assume that α = insert(f). From the

126

APPENDIX B. HORN-T R – TO T RPAD

definition of S we know that for every elementary action α, and sequence r of
elementary actions, S contains run-premises of the form:

d0,r
α
 d0,r,α

Thus, it follows that d2 = d1,insert(f), where the subindex 1 is a sequence of
elementary actions. From definition of satisfaction in path structures we know
that for every model M of Q,S:

M, 〈d1d2〉 ` insert(f)

Since there are no state premises of the form d2Bg for any fluent g, it follows
that the base fluent facts that hold in M(〈d2〉) are induced by the PADs that
exist in the transaction base. Thus, since M(〈d0〉) is complete and consistent,
from the Forward Inertia frame axioms we can conclude that if M, 〈d1〉 |= g
then M, 〈d2〉 |= g for every base fluent g other than f or neg f . And from the
definition of insert(f), we know thatM, 〈d2〉 |= f . It follows that D(d2) is also
consistent and complete.

Induction step: N = k, and assume that whenever (B.1) can be derived
by the proof theory in less than k steps, then consistency of D(d1) entails
consistency of D(dn). If, in addition, D(d1) is complete then so is D(dn).
Observe that (B.1) can possibly be derived only via one of the following rules:
Applying transaction definition Rule or Sequencing Rule. We will consider each
possibility in turn. Since α is an action, (B.1) cannot be derived neither by the
Forward Projection Rule, nor by the Decomposition Rule.

• Applying transaction definition Rule: Suppose that α is a composed ac-
tion, and there is a rule in P of the form

α← β

and (B.1) was derived via the Applying transaction definition Rule. Then
we know that

Q,S,d1 . . .dn ` β (B.3)

was derived in less than k steps. By Inductive Hypothesis, if D(d1) is
consistent and complete, then so is D(dn).

• Sequencing Rule: Suppose that α = β ⊗ γ, and (B.1) was derived via the
Sequencing Rule. Then we know that

Q,S,d1 . . .dk ` β and Q,S,dk . . .dn ` γ (B.4)

were derived in less than k steps. By Inductive Hypothesis, if D(d1) is
consistent and complete, then so is D(dk), and by inductive hypothesis
again, so is D(dn). �

127

Appendix B

B.0.13. Theorem (Soundness). Let P be a Horn-T R – transaction base and
D a database state. Let (Q,S)d0 be a relational specification of (P,D). Suppose
that Q,S,d0 . . .dn |= h. Then there exist relational database states D1, . . . ,
Dn−1 (in LT R) such that

P,D,D1 . . .Dn−1,D(dn) |= h

where D(dn) is as in Definition 3.4.7.

Proof. The proof relies on the fact that T RPAD has a sound and complete proof
theory. We will now prove the theorem by induction on the number N of steps
needed to derive

Q,S,d . . .dn ` h (B.5)

Base case : N = 1. In that case, (B.5) can only be derived by the (run
or state) premise inference rule or by the axiom in F . We consider each case in
turn:

• Suppose that (B.5) was derived by the axiom in F , then it follows that
(B.5) has the form: P,d ` (). The claim follows by the axioms in the
Horn-T R – proof system.

• Suppose that and (B.5) has the form P,S,d0 ` h for some fluent literal
h, and it was derived by a state premise inference rule. By the definition
of (Q,S)d0 , it follows that d0 B h ∈ S if and only if h ∈ D. Thus,
D(d0) = D and by definition of satisfaction in Horn-T R –, we can conclude
that P,D |= h.

• Suppose that (B.5) has the form P,S,dndn+1 ` α for some partially
defined action α, and it was derived by a run premise inference rule. The
cases where α is an insert or a delete are completely symmetrical. For
concreteness assume that α = insert(f). By definition of S we know that
dn+1 = dn,α and there is a run premises in S of the form

dn
α
 dn+1

From the Forward Inertia frame axioms, it follows that for every model
M of (Q,S)d0 , it holds that:

1. For every base fluent g

{g | M, 〈dn〉 |= g and g 6= f and g 6= neg f}
=
{g | M, 〈dn,α〉 |= g and g 6= f and g 6= neg f}

128

APPENDIX B. HORN-T R – TO T RPAD

2. From the definition of insert(f), we know that

M, 〈dn,α〉 |= f

Therefore it follows that

D(dn,α) = D(dn) ∪ {f} \ {neg f}

this implies that
P,D(dn)D(dn,α) ` α

Induction step: N = k > 1 and assume that whenever (B.5) can be
derived by the proof theory in less than k steps, then there are relational states
D1 . . .Dn such that

P,D(d),D1 . . .Dn−1,D(dn) ` h

• Forward Projection: Suppose that (B.5) was derived via the Forward
Projection rule. This means that (B.5) was derived using a PAD p ∈ Q
that belongs to one of the following types of rules:

– A Frame Axiom

– The encoding of an elementary action.

We consider each of these cases in turn:

– Suppose (B.5) was derived via the Forward Projection rule and p is
a Forward Inertia pda. This implies that:

1. p has the form: inertial(f) ∧ f ⊗ α→ α⊗ f
2. (B.5) has the form P,S,dn ` f
3. neither f nor neg f is a primitive effect of α, and,

4. the following statements were derived in less than k steps:

(a) Q,S,dn−1 ` f
(b) Q,S,dn−1,dn ` α

by inductive hypothesis:

P,S,D(dn−1) ` f
P,S,D(dn−1)D(dn) ` α

The cases where α is an insert or a delete are completely symmetrical.
For concreteness assume that α = insert(g) where g 6= f and g 6=
neg f . Therefore, it follows by definition of the built-in operation
insert(g) in T R – that

P,D(dn) |= f

129

Appendix B

– Suppose (B.5) was derived via the Forward Projection rule and p
is the definition of insert or a delete. The cases where p defines
an insert or a delete are completely symmetrical. For concreteness
assume that p defines insert(f). This implies that:

1. p has the form: α→ α⊗ f
2. (B.5) has the form P,S,dn ` f
3. the following statement were derived in less than k steps: Q,S,dn−1,dn `
α

by inductive hypothesis:

Q,S,D(dn−1)D(dn) ` α

It follows that

P,D(dn) |= f

• Decomposition Rule : Suppose (B.5) was derived via the Decomposition
Rule rule. This implies that the following statements was derived in less
than k steps:

Q,S,d ` ψ ⊗ φ

where φ and ψ are serial conjunction of fluent literals. The inductive claim
trivially follows from the inductive hypothesis.

• Sequencing Rule : Suppose (B.5) was derived via the Sequencing Rule
rule. This implies that the following statements were derived in less than
k steps:

Q,S,d . . .dn ` φ
Q,S,d . . .dn ` ψ

Then, by the inductive hypothesis, there are relational states
D1 . . .Dn−1 such that

P,D(d),D1 . . .Dk−1,D(dk) |= φ
P,D(dk),D1 . . .Dn−1,D(dn) |= ψ

It follows that

P,D(d),D1 . . .Dn−1D(dn) |= φ⊗ ψ

• Applying transaction definition Rule: Suppose that h is a composed action,
and there is a rule in P of the form

h← β

130

APPENDIX B. HORN-T R – TO T RPAD

and (B.1) was derived via the Applying transaction definition Rule. Then
we know that

Q,S,d1 . . .dn ` β (B.6)

was derived in less than k steps. The claim follows from the Inductive
Hypothesis. This concludes the soundness proof. �

B.0.14. Theorem (Completeness). Let P be a Horn-T R – transaction base
and D a database state. Let (Q,S)d0 be a relational specification of (P,D).
Suppose that

P,D, . . .Dn |= h

then there are state identifiers d1 . . .dn such that

Q,S,d0 . . .dn |= h

Proof. The proof relies on the fact that serial-Horn Transaction Logic has a
sound and complete proof theory [11]. We reproduce a ground version of that
theory below. This ground version suffices for the purpose of our proof, since
the problem can be reduced to the case where P is ground.

TR0 (axiom): P,D ` (), where () is an empty serial conjunction of actions,
which we will view as a special fluent that is true in every state.

TR1 (folding): Suppose α← β ∈ P. Then, for any sequence of database states
D1, ...,Dn, from P,D1, ...,Dn ` β ⊗ γ derive P,D1, ...,Dn ` α⊗ γ.

TR2 (hypothetical): From P,D,D′1, ...,D
′
n ` β and

P,D,D1, ...,Dm ` γ derive P,D,D1, ...,Dm ` ♦β ⊗ γ.

TR3 (query): Suppose f is a fluent such that f ∈ D1.
Then from P,D1, ...,Dn ` β derive P,D1, ...,Dn ` f ⊗ β.

TR4 (update): Suppose u is an elementary transition (insert(f) or delete(f))
such that P,D1D2 |= u. Then from P,D2...Dn ` β derive P,D1D2...Dn `
u⊗ β.

Observe that we only need to consider states which are “reachable” from D.
We say that D1 is reachable from D, if there a serial conjunction of elementary
actions φ such that

P,D, . . . ,D1 ` φ (B.7)

Let D1 be reachable from D. We will now prove the theorem by induction on
the number N of steps needed to derive

P,D1, . . . ,Dn ` h (B.8)

131

Appendix B

using the above inference rules and the axiom.
Base case: N = 1. In that case, (B.8) must have been derived by the axiom
TR0 and thus must have the form P,D ` (). The proof of this case follows from
Axiom 1 in F .
Inductive case: N = k > 1. Suppose that whenever (B.8) can be derived
by the above proof theory in less than k steps then there are state identifiers
d1 . . .dn such that

Q,S,d . . .dn |= h

To prove that the same holds also when (B.8) is derived using k steps, note
that the last step in the derivation must be an application of one of the rules
TR1, ..., TR4. The cases where the last step in the derivation of (B.8) was either
TR1, or TR2, follow straightforwardly from inductive hypothesis and rules 1a
and 1b respectively. We consider each of the remaining two cases in turn.

• TR4: (B.8) was derived because h = u ⊗ β, where u is an elementary
transition such that P,D1,D2 |= u, and P,D2 . . .Dn ` β.

Since D1 is reachable from D with a finite number of insert and delete
operations, we know that there is serial conjunction of elementary actions
φ s.t. P,D . . .D1 ` φ, can be derived by the above proof theory.

Thus, by construction of S we know that there is a database state identifier
dφ such that

Q,S,d0 . . .dφ |= φ

Suppose for concreteness that u = insert(g). From the definition of S we
know that

dφ
insert(g)
 dφ,insert(g) ∈ S

Therefore
Q,S,dφ,dφ,insert(g) ` u

The claim now follows from 4 in F . �

• TR3: (C.1) was derived because α = f ⊗ β, f ∈ D1, and
P,D1 . . .Dn ` β was derived previously. Since D1 is reachable from D
with a finite number of insert and delete operations φ, we know that either

1. f ∈ D = and f was not removed by action φ, or

2. it was inserted by some insert action in φ.

In the first case, by definition, we know that

Q,S,d0 |= f
Q,S,d0 |= inertial(f)

132

APPENDIX B. HORN-T R – TO T RPAD

thus the claim follows from rules 2 and 4 in F .

The second case follows straightforwardly using the premises and following
a similar reasoning as above. �

133

Appendix C
Proofs of the reduction of Serial
Horn-T R – to Logic Programming

This appendix contains proofs of soundness and completeness of the reduction
of serial Horn-T R – to LP developed in Section 3.5. We assume that all transac-
tions are serial goals, and that the transaction base is a set of serial Horn rules.
For convenient reference we reproduce some of the definitions below.

C.0.15. Definition. [Consistency and completeness of state-terms] Let Γ(P,D)
be the LP reduction of a serial-Horn TR program (P,D) and let s be a ground
state-term. We say that s is complete if and only if for any ground base
fluent-term f

Γ(P,D) |= Holds(f, s) or Γ(P,D) |= Holds(neg f, s)

We will say that s is consistent if and only if there is no ground base fluent-
term f such that both of the following hold:

Γ(P,D) |= Holds(f, s) and Γ(P,D) |= Holds(neg f, s)

�

We will now establish a number of properties of the LP-reduction.

C.0.16. Proposition (State consistency and completeness). Let Γ(P,D)
be an LP-reduction of a relational serial-Horn Transaction Logic program (P,D).
Let s, ŝ be ground state-terms such that Γ(P,D) |= Execute(α, ŝ, s) holds,
where α is a ground action-term. If ŝ is consistent then so is s. If, in addition,
ŝ is complete then s is also complete.

135

Appendix C

Proof. Recall that Γ(P,D) has a unique least Herbrand model, M, and, there-
fore, Γ(P,D) |= Execute(α, ŝ, s) if and only if Execute(α, ŝ, s) ∈ M. This
model is computed via a sequence of bottom-up derivation steps, which apply
the rules of Γ(P,D) to the facts in Γ(P,D) and then repeatedly to the newly
derived facts. Our proof will proceed by induction on the number N of such
steps. We will prove only the second claim, namely, that consistency and com-
pleteness of ŝ implies these properties for s. A proof of the fact that consistency
alone (without completeness) of ŝ implies consistency for s can be obtained by
disregarding the completeness considerations in the proof below.

Base case: N = 1. This means that Execute(α, ŝ, s) is a fact in Γ(P,D) and
thus it can be derived by the rule Execution only. Therefore, α is an elementary
action and s = Result(α, ŝ). Since insert and delete actions are symmetric in
Γ(P,D), let us assume for concreteness that α = insert(f) for some fluent f .
By the rule Inertial, all base fluents except f and neg f are inertial with respect
to α. By Frame Axiom, this means that, for every base ground fluent-term
h other than f and neg f ,1 Holds(h, s) ∈ M if Holds(h, ŝ) ∈ M. Since ŝ is a
complete and consistent state, it follows that for every fluent other than f or
neg f , the fluent or its negation holds in s. For the remaining fluents f and
neg f , the rule Effect+ yields Holds(f, s) ∈ M while Holds(neg f, s) can be
derived neither by Frame Axiom nor by the Effect axioms—the only rules that
can possibly derive Holds-facts for states other than s0. This establishes the
base case of the induction.

Induction step: N = k, where k > 1. Assume that the claim holds for all
facts of the form Execute(α, ŝ, s) that were derived via k−1 or fewer derivation
steps. Execute(α, ŝ, s) can possibly be derived only via one of the following
rules: Unfolding, Sequencing, Hypothetical, or Query. We will consider each
possibility in turn.

Unfolding : Suppose Execute(α, ŝ, s) was derived via a ground instance

Execute(α, ŝ, s)← Execute(β, ŝ, s)

of the rule Unfolding. This means that Execute(β, ŝ, s) ∈ M, and it has been
derived before Execute(α, ŝ, s), i.e., using < k steps. Hence, s is consistent and
complete, by the inductive hypothesis.

Sequencing : Suppose that α = β ⊗ γ, and Execute(α, ŝ, s) was derived via
a ground instance

Execute(β ⊗ γ, ŝ, s)← Execute(β, ŝ, s′), Execute(γ, s′, s)

of the rule Sequencing. This means that Execute(β, ŝ, s′) and Execute(γ, s′, s)
have already been derived in less than k steps. By the inductive hypothesis,

1 Recall that, by convention, double-negation cancels out.

136

APPENDIX C. HORN-T R – TO LP

since ŝ is consistent and complete, so is s′. Applying the inductive hypothesis
again to Execute(γ, s′, s), we conclude that s is also consistent and complete.

Hypothetical : Suppose α = ♦β, and Execute(α, ŝ, s) was derived via a
ground instance

Execute(♦β, ŝ, ŝ)← Execute(β, ŝ, s′)

of the rule Hypothetical. Since here s = ŝ, the claim follows trivially.

Query : Suppose Execute(α, ŝ, s) was derived by the the rule Query. The
argument here is the same as in the case of the rule Hypothetical: s = ŝ and
therefore s both consistent and complete. �

C.0.17. Definition. [Correspondence between states in LLP and LTR] Given
a ground state-term t in LLP , let D(t) denote the following set of database
fluents in the language LTR of Transaction Logic:

D(t) = {f | f is a ground base fluent-term such that Γ(P,D) |= Holds(f, t)} �

C.0.18. Theorem (Soundness). Let Γ(P,D) be an LP-reduction of a rela-
tional serial-Horn TR program (P,D) and suppose that Γ(P,D) |= Execute(α, ŝ, s),
where ŝ and s are ground state-terms and ŝ is consistent. Then there exist re-
lational database states D1, . . . , Dn (in LTR) such that

P,D(ŝ)D1D2 . . .DnD(s) |= α

where D(ŝ) and D(s) are as in Definition 3.5.3.

Proof. The proof is by induction on the number N of derivation steps needed to
conclude Execute(α, ŝ, s) ∈M, where M is the unique least model of Γ(P,D).
Observe that since ŝ is consistent, so is s, by Proposition 3.5.2,

Base case: N = 1, i.e., Execute(α, ŝ, s) ∈M was derived in just one deriva-
tion step. This could be done only via the rule Execution, and in this case α is
a an elementary action insert(f) or delete(f) and s = Result(α, ŝ). Recall that
the treatment of insert and delete actions in Γ(P,D) is completely symmetric.
For concreteness, we assume that α = delete(f).

Similarly to the proof of Proposition 3.5.2, it is easy to show by direct in-
spection of the rules in Γ(P,D) that if g is unrelated to f and both f and g are
ground base fluents then Holds(g, ŝ) ∈M iff Holds(g, s) ∈M.

Concerning f , we know from the rule Effect- that Holds(neg f, s) ∈M and
that (by consistency and completeness of ŝ) eitherHolds(f, ŝ) orHolds(neg f, ŝ)
holds, but not both. Therefore D(s) = D(ŝ) − {f} + {neg f}. By the defini-
tion of the relational deletion operations in Transaction Logic, it follows that
P,D(ŝ)D(s) |= α.

137

Appendix C

Inductive hypothesis: N = k > 1 and assume that the claim holds for all
statements Execute(α, ŝ, s) that are derivable via less than k derivation steps
using the rules in Γ(P,D). As in earlier proofs, Execute(α, ŝ, s) can possibly be
derived only via one of the following rules: Unfolding, Sequencing, Hypothetical,
or Query. So we will consider each possibility in turn.

Unfolding : Suppose Execute(α, ŝ, s) was derived via a ground instance

Execute(α, ŝ, s)← Execute(β, ŝ, s)

of rule Unfolding. This implies the following:

• α← β is a ground instance of an implication in P

• Execute(β, ŝ, s) ∈M, and it has been derived before Execute(α, ŝ, s), i.e.,
using < k steps.

By the inductive hypothesis, P,D(ŝ)D1D2 . . .DnD(s) |= β for some interme-
diate database states D1, ..., Dn, and D(s) is consistent. This and the fact that
α← β is an instance of an implication in P implies P,D(ŝ)D1D2 . . .DnD(s) |=
α, by the definition of implication in TR.

Sequencing : Suppose that α = β ⊗ γ, and Execute(α, ŝ, s) was derived via
a ground instance

Execute(β ⊗ γ, ŝ, s)← Execute(β, ŝ, s′), Execute(γ, s′, s)

of rule Sequencing. This means that Execute(β, ŝ, s′) and Execute(γ, s′, s) have
already been derived in less than k steps. Since ŝ is consistent and complete,
Proposition 3.5.2 ensures that so are s′ and s. By the inductive hypothesis, we
conclude that

P,D(ŝ)D1D2 . . .DmD(s′) |= β
P,D(s′)Dm+1Dm+2 . . .DnD(s) |= γ

for some intermediate states D1, ..., Dn, and that D(s′), D(s) are consistent.
The claim now follows from the definition of serial conjunction ⊗ in TR.

Hypothetical : Suppose α = ♦β, and Execute(α, ŝ, s) was derived via a
ground instance

Execute(♦β, ŝ, ŝ)← Execute(β, ŝ, s′)

of the rule Hypothetical. By the inductive hypothesis, P,D(ŝ) . . .D(s′) |= β.
Therefore, the definition of the hypothetical operator in TR yields P,D(ŝ) |=
♦β.

Query : Suppose Execute(α, ŝ, s) was derived by the rule Query. This means
that Execute(α, ŝ, s) was derived via a rule of the form Execute(f, ŝ, ŝ) ← Holds(f, ŝ)
and Holds(f, ŝ) ∈ M, where f is a ground base fluent. In particular, α = f
and s = ŝ. By Definition 3.5.3, f ∈ D(ŝ) and, by the definition of executional
entailment for fluents in TR, P,D(ŝ) |= f . �

138

APPENDIX C. HORN-T R – TO LP

C.0.19. Theorem (Completeness). Let Γ(P,D) be an LP-reduction of a re-
lational serial-Horn TR program (P,D). Suppose P, D̂D1 . . .DnD̄ |= α, where
D̂ = D(ŝ) for some consistent ground state-term ŝ. Then there is a consistent
ground state-term s̄ such that D̄ = D(s̄) and Γ(P,D) |= Execute(α, ŝ, s̄).2

Proof. The proof relies on the fact that serial-Horn Transaction Logic has a
sound and complete proof theory [11]. We reproduce a ground version of that
theory below. This ground version suffices for the purpose of our proof, since
the problem can be reduced to the case where P is ground.

TR0 (axiom): P,D ` (), where () is an empty serial conjunction of actions,
which we will view as a special fluent that is true in every state.

TR1 (folding): Suppose α← β ∈ P. Then, for any sequence of database states
D1, ...,Dn, from P,D1, ...,Dn ` β ⊗ γ derive P,D1, ...,Dn ` α⊗ γ.

TR2 (hypothetical): From P,D,D′1, ...,D
′
n ` β and P,D,D1, ...,Dm ` γ

derive P,D,D1, ...,Dm ` ♦β ⊗ γ.

TR3 (query): Suppose f is a fluent such that f ∈ D1. Then from P,D1, ...,Dn `
β
derive P,D1, ...,Dn ` f ⊗ β.

TR4 (update): Suppose u is an elementary transition (insert(f) or delete(f))
such that P,D1D2 |= u. Then from P,D2...Dn ` β derive P,D1D2...Dn `
u⊗ β.

We will now prove the theorem by induction on the number N of steps needed
to derive

P, D̂,D1, . . . ,Dn, D̄ ` α (C.1)

using the above inference rules and the axiom.

Base case: N = 1. In that case, (C.1) must have been derived by the axiom
TR0 and thus must have the form P, D̂ ` (), where D̂ = D̄ (and thus ŝ = s̄).
Since () is treated as a fluent that is true in every state, the rule Query of
Γ(P,D) ensures that Γ(P,D) |= Execute((), ŝ, s̄), since ŝ = s̄.

Inductive case: N = k > 1. Suppose that whenever (C.1) can be derived by
the above proof theory in less than k steps then Γ(P,D) |= Execute(α, ŝ, s̄). To
prove that the same holds also when (C.1) is derived using k steps, note that
the last step in the derivation must be an application of one of the rules TR1,
..., TR4. We consider each of these cases in turn.

TR1: (C.1) was derived because α ← β ∈ P and P, D̂D1...DnD̄ ` β ⊗ γ
was derived previously, in less than k steps. By the inductive assumption,

2 D(ŝ) and D(s̄) were introduced in Definition 3.5.3.

139

Appendix C

Γ(P,D) |= Execute(β ⊗ γ, ŝ, s̄) must hold. But then, by the rule Unfolding of
Γ(P,D) we can derive Γ(P,D) |= Execute(α, ŝ, s̄).

TR2: (C.1) was derived because α = ♦β ⊗ γ and both P, D̂D′1...D
′
n `

β and P, D̂D1...DmD̄ ` γ were derived previously via less than k steps. By the
inductive assumption, Γ(P,D) |= Execute(β, ŝ, s′n), for some consistent state s′n,
and Γ(P,D) |= Execute(γ, ŝ, s̄). But then rules Hypothetical and Sequencing
yield Γ(P,D) |= Execute(α, ŝ, s̄).

TR3: (C.1) was derived because α = f⊗β, f ∈ D̂, and P, D̂D1 . . .DnD̄ `
β was derived previously. Since f ∈ D̂, Definition 3.5.3 implies Γ(P,D) |=
Holds(f, ŝ). The inductive assumption also gives us Γ(P,D) |= Execute(β, ŝ, s̄).
The inductive claim now follows from these two facts and the rules Query and
Sequencing.

TR4: (C.1) was derived because α = u⊗ β, where u is an elementary tran-
sition such that P, D̂D1 |= u, and P,D1 . . .DnD̄ ` β was derived earlier. By
the rule Execution, we have

Γ(P,D) |= Execute(u, ŝ, Result(u, ŝ)) (C.2)

Moreover, it is easy to show from the definitions of insert(f), delete(f) and the
rules Effect+, Effect-, and Frame Axiom that D1 = D(Result(u, ŝ)). This and
the inductive assumption lets us conclude

Γ(P,D) |= Execute(β,Result(u, ŝ), s̄) (C.3)

The inductive claim now follows from (C.2), (C.3), and the rule Sequencing.
This concludes the proof. �

140

Appendix D
Proofs for the Reduction of T RPAD

D
to

Logic Programming

In this chapter we prove soundness and completeness of the reduction of T RPAD
D

to sorted Horn logic programming developed in Section 3.6.

D.0.20. Lemma. Let Γ(P,S) be an LP-reduction of a T RPAD
D specification

(P,S). Suppose s = db2stS(d), then d = st2db(s).

Proof. The proof is by induction on the structure of the state-term db2stS(d) =
s.

Base case: s is a state-constant. The claim follows directly from Defini-
tion 3.6.2.

Inductive step: Suppose db2stS(d) = s, and s = Result(α, s0) for some pda

α and a state-term s0. By definition, there must be a premise d0
α
 d such

that s0 = db2stS(d0). By the inductive hypothesis, d0 = st2db(s0). From this
and the definition of st2db it follows that d = st2db(s). �

D.0.21. Lemma. Let Γ(P,S) be an LP-reduction of a T RPAD specification (P,S).
Let s be a ground state-term. Suppose Holds(f, s) is a fact in Γ(P,S). Then

1. st2db(s) is defined and

2. P,S st2db(s) |= f .

As a special case, we get P,S, st2db(s) |= ().

Proof. Suppose Holds(f, s) is a fact in Γ(P,S). By construction of Γ(P,S),
Holds(f, s) must have gotten into Γ(P,S) due to the Premises part of the

141

Appendix D

construction because S has a state-premise of the form d B f such that s =
db2stS(d). (If f = (), then the same conclusion follows from the No-op rule.)
By Lemma D.0.20, we conclude that d = st2db(s) and, therefore, st2db(s) is
defined. Also, by the Premise inference rule, P,S,d ` f and, by the soundness
of the inference system, P,S,d |= f . �

The following technical results are used in the proof of soundness of the
reduction from T RPAD

D to logic programming.

D.0.22. Lemma. Let Γ(P,S) be an LP-reduction of a T RPAD specification (P,S).
Suppose that, for some ground state-terms s1 and s2 and a pda α

• Γ(P,S) |= Execute(α, s1, s2)

• st2db(s1), st2db(s2) are defined, and

• P,S,d1d2 |= α, where d1 = st2db(s1) and d2 = st2db(s2)

Then

• P,S,d1 |= d(s1)

• P,S,d2 |= d(s2)

Proof. Recall that Γ(P,S) has a unique least Herbrand model, M, and, there-
fore, for any ground predicate p, Γ(P,S) |= p if and only if p ∈M. This model
is computed via a sequence of bottom-up derivation steps, which apply the rules
of Γ(P,S) to the facts in Γ(P,S) and then repeatedly to the newly derived facts.

The proof is by induction on the number N of derivation steps needed to con-
clude Holds(f, s1) ∈M (or Holds(f, s2) ∈M). Since the proofs for Holds(f, s1)
and Holds(f, s2) are almost identical, we only give a proof for Holds(f, s1).

Base case: N = 1. Observe that Holds(f, s1) can be derived in one step
only if Holds(f, s1) is a fact in Γ(P,S). The claim now follows from Lemma
D.0.21.

Inductive step: N = k > 1. Suppose that the claim is true for all state-
terms s1, s2 such that Holds(f, s1) was derived in less than k steps using the
rules in Γ(P,S).

Note that, after the first iteration, the Holds facts can be derived only via
the Forward Projection rules in Γ(P,S), so examine this case.

Forward Projection: Suppose Holds(f, s1) was derived by a ground instance
of one of the following the rules

Holds(b3, S)← Execute(α, S,Result(α, S)),
Execute(b1, S, S), Execute(b2, Result(α, S), Result(α, S))

Holds(b4, Result(α, S))← Execute(α, S,Result(α, S)),
Execute(b1, S, S), Execute(b2, Result(α, S), Result(α, S)))

142

APPENDIX D. T RPAD TO LP

This implies that

• there is a PAD of the form b1 ⊗ α⊗ b2 → b3 ⊗ α⊗ b4 in P.

• Execute(α, s1, Result(α, s1)), Execute(b1, S, S) and Execute(b2, Result(α, S), Result(α, S))
were added to M in less than k derivation steps.

The cases where f is derived by either of the two forward projection rules above
are analogous, so, for concreteness, we assume that f is derived by the first rule
and that f is a conjunct in b3.

Recall that, by assumption, P,S,d1d2 |= α, where d1 = st2db(s1) and
d2 = st2db(Result(α, s1)), and that by the inductive hypothesis, we have

• P,S,d1 |= b1

• P,S,d2 |= b2.

Since the antecedent of the aforesaid PAD b1⊗α⊗ b2 → b3⊗α⊗ b4 is satisfied,
the definition of satisfaction in TR implies that P,S,d1 |= b3. Since f is a
conjunct in b3, we conclude that P,S,d1 |= f . �

D.0.23. Proposition. Let Γ(P,S) be an LP-reduction of a T RPAD
D specifica-

tion (P,S). Suppose Γ(P,S) |= Execute(φ, s1, s2) where s1 and s2 are ground
state-terms. Then

• st2db(s1) and st2db(s2) are defined and

• P,S,d1 . . .d2 |= φ, where d1 = st2db(s1), d2 = st2db(s2)

Proof. The proof is by induction on the number N of derivation steps needed to
conclude Execute(φ, s1, s2) ∈M, where M is the unique least model of Γ(P,S).

Base case. N = 1: Let s1 and s2 be ground state-terms. Suppose
Execute(φ, s1, s2) was derived in just one derivation step. This means that

Execute(φ, s1, s2) ∈ Γ(P,S) and it got into Γ(P,S) due to the premise d1
φ

d2 ∈ S, where s1 = db2stS(d1) and s2 = db2stS(d2). This and Lemma D.0.20
yields d1 = st2db(s1) and d2 = st2db(s2). By the soundness of the Premise
inference rule, P,S,d1d2 |= φ.

Inductive step: N = k > 1. Suppose that the claim of the proposition holds
for all state-terms s1, s2 such that the statement Execute(α, s1, s2) is derivable
in less than k derivation steps using the axioms in Γ(P,S).

The statement Execute(α, s1, s2) can be derived only via one of the following
axioms: Unfolding, Premises, Sequencing, Query and Hypothetical. We consider
each case in turn.

143

Appendix D

Unfolding : Suppose Execute(φ, s1, s2) was derived via a ground instance of
the Unfolding rule in Γ(P,S):

Execute(φ, s1, s2)← Execute(ψ, s1, s2)

This implies the following:

• φ← ψ is a ground instance of an implication in P

• Execute(ψ, s1, s2) ∈M, and it has been derived before Execute(φ, s1, s2),
i.e., using less than k steps.

By the inductive hypothesis,

• st2db(s1) and st2db(s2) are defined and

• P,S,d1 . . .d2 |= ψ, where d1 = st2db(s1), d2 = st2db(s2)

From this and the definition of implication in TR, it follows that

P,S,d1 . . .d2 |= φ

Sequencing : Suppose that φ = β ⊗ γ, and Execute(φ, s1, s2) was derived via
a ground instance of the sequencing rule in Γ(P,S):

Execute(β ⊗ γ, s1, s2)← Execute(β, s1, s), Execute(γ, s, s2)

This means that Execute(β, s1, s) and Execute(γ, s, s2) have already been de-
rived in a number of steps smaller than k.

By the inductive hypothesis, it follows that st2db(s1), st2db(s) and st2db(s2)
are defined and

P,S,d1 . . .d |= β
P,S,d . . .d2 |= γ

where d1 = st2db(s1), d = st2db(s) and d2 = st2db(s2). This and the definition
of the serial conjunction ⊗ in TR imply that

P,S,d1 . . .d2 |= φ

Decomposition : Suppose that φ is a fluent or an hypothetical, and Execute(φ, s1, s2)
was derived via a ground instance of the decomposition rule in Γ(P,S):

Execute(φ, s1, s1)← Execute(g, s1, s1)

where s1 = s2. This implies the following:

• g is a conjunction of fluents and hypotheticals.

144

APPENDIX D. T RPAD TO LP

• Execute(g, s1, s1) ∈M, and it has been derived before Execute(φ, s1, s2),
i.e., using less than k steps.

By the inductive hypothesis,

• st2db(s1) is defined and

• P,S,d1 |= g, where d1 = st2db(s1).

From this and the definition of serial conjunction in TR, it follows that

P,S,d1 |= φ

Hypothetical : Suppose φ = ♦ψ, and Execute(φ, s1, s2) was derived via a
ground instance of the hypothetical rule in Γ(P,S):

Execute(♦ψ, s1, s1)← Execute(ψ, s1, s)

where s1 = s2. By the inductive hypothesis,

• st2db(s1) and st2db(s) are defined and

• P,S,d1 d |= ψ, where d1 = st2db(s1), d = st2db(s)

Therefore, the definition of the hypothetical operator in TR yields

P,S,d1 |= φ

Query : Suppose Execute(φ, s1, s2) was derived via the Query rule of Γ(P,S):

Execute(φ, s1, s1) ← Holds(φ, s1)

where s1 = s2, and Holds(f, s1) was derived in less than k steps. This implies
that φ is a fluent. Observe that Holds(φ, s1) can be derived only by the rules
Premises and Forward Projection in Γ(P,S). If Holds(φ, s1) was derived via
the rule Premises, it means that Holds(φ, s1) is a fact in Γ(P,S) and the claim
follows from Lemma D.0.21.

Suppose that Holds(φ, s1) was derived via the forward projection rule. This
means that φ is a primitive pre-effect or a primitive effect of some PAD α. The
proofs for pre-effects and effects are similar, so we assume that φ is a primitive
pre-effect of α. It follows that there is a PAD of the form b1 ⊗ α ⊗ b2 →
b3 ⊗ α ⊗ b4 in P, φ is a conjunct in b3, and Holds(f, s1) was derived by the
forward projection rule in Γ(P,S) associated with this PAD:

Holds(b3, s1)← Execute(α, s1, Result(α, s1)),
Holds(b1, s1), Holds(b2, Result(α, s1))

145

Appendix D

Recall from Section 3.6 that the above rules where fluents like b3 can be complex
formulas are just shortcuts for sets of rules that are obtained by distributing ∧
through Holds and eliminating conjunction in rule heads and disjunctions in
rule bodies. Since φ is a conjunct in b3, one of the rules obtained in this way
will be

Holds(φ, s1)← Execute(α, s1, Result(α, s1)),
Holds(b1, s1), Holds(b2, Result(α, s1))

That is, Holds(φ, s1) was derived in less than k steps, Since Execute(α, s1, Result(α, s1))
is in the body of the above rule, it was also derived in less than k steps. By the
inductive hypothesis,

• st2db(s1) and st2db(Result(s1)) are defined and

• P,S,d1 . . .d |= α, where d1 = st2db(s1), d = st2db(Result(s1))

The claim now follows from Lemma D.0.22. �

D.0.24. Theorem (Soundness). Let Γ(P,S) be an LP-reduction of a T RPAD
D

specification (P,S). Suppose Γ(P,S) |= Execute(α, s1, s2) where s1 and s2 are
ground state-terms. Then there exist relational database states d1, . . . ,d2 (in
LTR) such that the following holds:

1. P,S,d1 . . .d2 |= α

2. d1 = st2db(s1), d2 = st2db(s2)

3. P,S,d1 |= d(s1) and P,S,d2 |= d(s2)

Proof. Suppose Γ(P,S) |= Execute(α, s1, s2). Claims 1 and 2 follow directly
from Proposition D.0.23. Claim 3 follows from Claim 2 and Lemma D.0.22. �

D.0.25. Theorem (Completeness). Let Γ(P,S) be an LP-reduction of a T RPAD
D

specification (P,S). Suppose P,S,d1 . . .dn |= φ. Then the following holds:

• If n = 1, and there is a state-term s1 such that db2stS(d1) = s1, then
φ is a conjunction of fluents and hypotheticals and:

Γ(P,S) |= Execute(φ, s1, s1)

• If n > 1 and there are ground state-terms s1, s2 such that db2stS(d1) =
s1 and db2stS(dn) = s2, then

Γ(P,S) |= Execute(φ, s1, s2)

146

APPENDIX D. T RPAD TO LP

Proof. The proof relies on the fact that T RPAD has a sound and complete proof
theory developed in Section 3.3. We will prove the theorem by induction on the
number N of steps needed to derive

P,S,d1 . . .d2 ` φ (D.1)

using the inference system F from Section 3.3. We will be referring to the
inference rules using the same enumeration than the one used in Definition
A.0.1.

Base case: N = 1. In that case, (D.1) can possibly be derived by the
No-op axiom or the premise inference rule. (Note that no other inference rules
(even the hypothetical rule) can be used to derive a sequent in the first inference
step.) We consider each case in turn.

• Suppose (D.1) was derived using the no-op axiom P,d1 ` (). Then the
following must be true:

– the sequent (D.1) has the form P,S,d1 ` ()

– φ is a the empty serial conjunction ()

– db2stS(d1) is defined

By the construction of Γ(P,S), Holds((), s1) ∈ Γ(P,S) for any s1 =
db2stS(d1). The claim now follows from this by instantiating the Query
rule Execute(F, S, S)← Holds(F, S) in Γ(P,S).

• If (D.1) was derived via the premise inference rule of F , it could be derived
only using a state-premise or a run-premise in S:

– Suppose (D.1) was derived using a state-premise d1 B φ ∈ S. Then
the following statements are true:

∗ the sequent (D.1) has the form P,S,d1 ` φ
∗ φ is a fluent literal

∗ db2stS(d1) is defined

By the construction of Γ(P,S), Holds(φ, s1) ∈ Γ(P,S) for any s1 =
db2stS(d1). The claim now follows from this by instantiating the
Query rule Execute(F, S, S)← Holds(F, S) in Γ(P,S).

– Suppose (D.1) was derived using a run-premise d1
φ
 d2 ∈ S and

(D.1) has the form P,S,d1d2 ` φ. From the definition of db2stS
it follows that db2stS(d1) and db2stS(d2) are defined and if s1 =
db2stS(d1), then Result(φ, s1) = db2stS(d2). By the construction of
Γ(P,S), the above run-premise in S ensures that
Execute(φ, s1, Result(φ, s1)) is in Γ(P,S), which proves our claim.

147

Appendix D

Inductive step: N = k > 1. Assume that whenever there are ground
state-terms s1, s2 such that s1 = db2stS(d1) and s2 = db2stS(dn), and
(D.1) can be derived by the proof theory in less than k steps then Γ(P,S) |=
Execute(φ, s1, s2).

To prove that the same holds also when (D.1) is derived using k steps, note
that the last step in the derivation must be an application of one of these rules
in F :

• A Horn inference rule.

• The Forward Projection rule.

• The Sequencing rule.

• The Decomposition rule.

We consider each of these cases in turn.

• A Horn inference rule: 1a or 1b.

– Rule 1a. The sequent (D.1) was derived because φ = a ⊗ ψ, a ←
η ∈ P, and P,S,d1...d2 ` η ⊗ ψ was derived previously in less
than k steps. Suppose that db2stS(d1) and db2stS(d2) are defined.
By the inductive assumption, there are states s1 = db2stS(d1) and
s2 = db2stS(d2), such that Γ(P,S) |= Execute(η⊗ψ, s1, s2). By the
Sequencing rule in Γ(P,S), it follows that there is some state-term s
such that Γ(P,S) |= Execute(η, s1, s) and Γ(P,S) |= Execute(ψ, s, s2).
But then, by the Unfolding rule in Γ(P,S), we can derive Γ(P,S) |=
Execute(a, s1, s). Finally, using the Sequencing rule again, we derive
Γ(P,S) |= Execute(a⊗ ψ, s1, s2).

– Rule 1b: The sequent (D.1) was derived because φ = ♦β ⊗ γ, and
both P,S,d1...d

′ ` β and P,S,d1...d2 ` γ were derived previ-
ously in less than k steps. Suppose that db2stS(d1),db2stS(d2), and
db2stS(d′) are defined. By the inductive assumption, there are states
s1 = db2stS(d1), s′ = db2stS(d′) and s2 = db2stS(d2), such that
Γ(P,D) |= Execute(β, s1, s

′), and Γ(P,D) |= Execute(γ, s1, s2).
This and the rules for hypotheticals and sequencing in Γ(P,S) yield
Γ(P,S) |= Execute(φ, s1, s2).

• The Forward Projection rule. Suppose (D.1) was derived because there is
a PAD b1 ⊗ α⊗ b2 → b3 ⊗ α⊗ b4 ∈ P, where φ is b3 or b4, and

P,S,d1 ` b1
P,S,d2 ` b2
P,S,d1d2 ` α

148

APPENDIX D. T RPAD TO LP

were derived previously in less than k steps. Suppose that db2stS(d1) and
db2stS(d2) are non empty. The inductive assumption ensures that there
are states s1 = d1 and s2 = db2stS(d2) such that

Γ(P,S) |= Execute(α, s1, s2)
Γ(P,S) |= Execute(b1, s1, s1)
Γ(P,S) |= Execute(b2, s2, s2)

Now the inductive claim follows from these facts and the rules for forward
projection, querying, and sequencing in Γ(P,S).

• The Sequencing rule. Suppose the sequent (D.1) was derived because

P,S,d1 . . .d ` ψ
P,S,d . . .d2 ` η

were derived previously, in less than k steps and φ = ψ ⊗ η. Suppose
that db2stS(d1), db2stS(d), and db2stS(d2) are defined. By the inductive
assumption, there are states s1 = db2stS(d1) and s = db2stS(d) such that
Γ(P,S) |= Execute(ψ, s1, s) and there is a state s2 = db2stS(d2) such that
Γ(P,S) |= Execute(ψ, s, s2). The inductive claim now follows from this
and the sequencing rule in Γ(P,S).

• The Decomposition rule. Suppose the sequent (D.1) was derived be-
cause either P,S,d1 ` φ ⊗ η or P,S,d1 ` η ⊗ φ was derived previ-
ously in less than k steps. By the inductive assumption, there is a state
s1 = db2stS(d1), we have Γ(P,S) |= Execute(φ ⊗ η, s1, s1) or Γ(P,S) |=
Execute(η⊗ φ, s1, s1). The inductive claim now follows from this and the
Decomposition rule in Γ(P,S). This concludes the proof of completeness.
�

149

Appendix E
Proof for the Well-founded Semantics
of T RPAD

In this chapter we prove that T RPAD specifications have a unique minimal model.
For simplicity we present a ground version of the proofs. Lifting to the non-
ground case is done in a standard way (cf. [11]).

We assume that the transaction base is a set of serial Horn rules, the action
base is a set of PADs, and that the set of premises are state- and run-premises.

First we prove that T RPAD specifications which do not contain neither not
nor the special proposition uπ have a least (2-valued) model, and it can be con-
structed iteratively in a bottom-up fashion. Afterwards, we prove that general
T RPAD specifications have a least (3-valued) partial model.

Least models for {not ,uπ}-free T RPAD Specifications

In this section we reduce {not ,uπ}-free T RPAD specifications to {not ,uπ}-free
Horn-TR programs.

T R is parametrized by data and transition oracles, denoted OD and OT
respectively. The data oracles specifies a set of primitive database queries, i.e.,
the static semantics of states; and the transition oracle specifies a set of primitive
database updates, i.e., the dynamic semantics of states. T RPAD, does not use any
oracles—data or transition— but the semantics of Horn-TR programs. Details
can be found in [11].

Recall that the symbols uπ are special propositions that are unknown in π
and false in any other path. With this reduction we prove that {not ,uπ}-free
T RPAD specification have a least (2-valued) model (LM). Recall that {not ,uπ}-
free Horn-TR programs have a unique minimal model [11].

151

Appendix E

In the remainder, given a serial conjunction of fluents b and a data oracle
OD, will slightly abuse the notation and write b ∈ OD meaning that for every
conjunct (fluent) f in b, we have that f ∈ OD.

Next, in Definitions E.0.26 ,E.0.27, and E.0.28, we iteratively build data and
transition oracles that encode the information in the premises and PADs.

E.0.26. Definition. [Oracalization] Let (E ,P,S) be a T RPAD specification,
OD andOT data and transition oracles respectively, and M the LPM of (OD,OT ,P).

By the oracalization of (E ,P,S) given (OD,OT), written as (OD,OT)
(E,P,S) , we mean

the new oracles OD(S,E) and OT(S,E) obtained from (OD,OT) as follows:

1. For every path π and literal h, if h ∈ OD(π) then h ∈ OD(S,E)(π)

2. For every path π and literal h, if h ∈ OT (π) then h ∈ OT(S,E)(π)

3. For every state-premise dB f ∈ S, we have that f ∈ OD(S,E)(〈d〉)

4. For every run-premise d1
α
 d2 ∈ S, we have that α ∈ OT(S,E)(〈d1,d2〉)

5. For every path of the form 〈d1d2〉 and PAD in E of the form b1⊗α⊗b2 →
b3 ⊗ α⊗ b4 such that:

M(〈d1〉) |= b1
M(〈d2〉) |= b2
M(〈d1d2〉) |= α

then the next two statements hold

b3 ∈ OD(S,E)(〈d1〉)
b4 ∈ OD(S,E)(〈d2〉)

�

E.0.27. Definition. [Oracalizer Operator] The incremental oracalizer oper-
ator, Υ, for a specifications (E ,P,S) takes a set of data and transition oracles
(OD,OT) and returns a new set of oracles as follows:

Υ((OD,OT)) =
(OD,OT)

(E ,P,S)

Let (OD0 ,OT0) be oracles that maps each path π to the empty set. The ordinal
powers of the immediate consequence operator Υ are defined inductively as
follows:

• Υ↑0((OD0 ,OT0)) = (OD0 ,OT0)

152

APPENDIX E. WELL-FOUNDED SEMANTICS

• Υ↑n((OD0 ,OT0)) = Υ(Υ↑n−1((OD0 ,OT0)), for n a successor ordinal

• Υ↑n(I0)(π) =
⋃
j≤n Υ↑j(I0), if n is a limit ordinal �

The operator Υ is monotonic with respect to the standard inclusion relation,
⊆, when (E ,P,S) is fixed. Because of this, the sequence {Υ↑n((OD0 ,OT0))} has
a least fixed point and is computable via transfinite induction.

E.0.28. Definition. [T RPAD compliant Oracles] The T RPAD compliant ora-
cles of a specification (E ,P,S) is defined as the limit of the sequence {Υ↑n((OD0 ,OT0))}.
�

The following technical results are needed to prove that every {not ,uπ}-free
T RPAD program has a minimal model (c.f. Theorem E.0.32).

E.0.29. Lemma. Let (OD,OT) be the T RPAD compliant oracles of the T RPAD

specification (E ,P,S). Then the Horn program (OD,OT ,P) has a least Her-
brand model.

Proof. Follows from the fact that every {not ,uπ}-free Horn program have a
least model [11]. �

E.0.30. Lemma. Let (E ,P,S) be a T RPAD specification. Let OD and OT be the
T RPAD compliant data and transition oracles of (E ,P,S). Let M the a model
of the Horn program (OD,OT ,P). Then M is a model of (E ,P,S).

Proof. By hypothesis we know that M |= P. By construction of OD and OT ,
we know that

• For every state-premise dBf ∈ S, we know that f ∈ OD(〈d〉) and therefore
M(〈d〉)(f) = t

• For every run-premise d1
α
 d2 ∈ S, we know that α ∈ OT (〈d1,d2〉) and

therefore M(〈d1,d2〉)(α) = t

Thus, we can conclude that M is a model of S.
In addition, we know that for every path of the form 〈d1d2〉 and PAD in E

of the form b1 ⊗ α⊗ b2 → b3 ⊗ α⊗ b4 such that:

M(〈d1〉) |= b1
M(〈d2〉) |= b2
M(〈d1,d2〉) |= α

it follows that
b3 ∈ OD(〈d1〉)
b4 ∈ OD(〈d2〉)

153

Appendix E

and therefore
M(〈d1〉) |= b3
M(〈d2〉) |= b4

This yields thatM is a model of E . This concludes the proof of the lemma. �

E.0.31. Lemma. Let (E ,P,S) be a T RPAD specification. Let OD and OT be the
T RPAD compliant data and transition oracles of (E ,P,S). Let M be a model of
(E ,P,S). Then M is a model of (OD,OT ,P).

Proof. Since M is a model of E ,S, by construction of the oracles it follows
that M is a model of OD,OT . By hypothesis, M |= P. Thus M is a model of
(OD,OT ,P). �

E.0.32. Theorem. Let (E ,P,S) be a T RPAD specification. Let OD and OT be
the T RPAD compliant data and transition oracles of S and E. Let M be the
least Herbrand model of the Horn program (OD,OT ,P). Let N be a model of
(E ,P,S). Then

M� N

Proof. LetM be the least Herbrand model of the Horn program (OD,OT ,P).
By Lemma E.0.30, M is a model of (E ,P,S). Suppose that it is not a minimal
model. Thus, there is a model M of (E ,P,S), such that

M �M

By Lemma E.0.31, M is a model of (OD,OT ,P), and moreover, it is smaller
thanM. But this is absurd sinceM is the minimal model of (OD,OT ,P). This
implies that M is the minimal model of (E ,P,S). �

E.0.33. Corollary. Let (E ,P,S) be a {not ,uπ}-free T RPAD specification.
Then (E ,P,S) has a LPM.

Bottom-up Construction of 2-valued Least Models in
Horn-TR

In this section we prove that the least model (LM) of not -free serial-Horn-
programs do not contain the special proposition uπ and can be built up in a
bottom-up fashion. The least model is defined with respect to the truth ordering
�. It is worth noting that in the 2-valued universe models are defined as sets of
positive atoms. So, � would correspond to subsets of positive atoms.

154

APPENDIX E. WELL-FOUNDED SEMANTICS

To avoid tedious repetitions, In this sections we assume that serial-Horn
programs in this sections are not -free and do not contain the special proposition
uπ.

E.0.34. Definition. [Definite Consequence Operator] Let I be a Herbrand
Path structure. The consequence operator , Ξ, for a serial-Horn program
(Od,Ot,P), is defined as

Ξ(I) = J

where

1. J is a Herbrand model (i.e. 2-value model) of (Od,Ot)

2. for every path π and literal h such that I(π)(h) = t, we have that
J(π)(h) = t

3. for every path π and literal h such that I(π)(h) = f, we have that
J(π)(h) = f

4. for every path π, and rule in P of the form h← G,

if I, π |= G then J, π |= h

The ordinal powers of the consequence operator Ξ are then defined induc-
tively as follows:

• Ξ↑0(I0) = I0

• Ξ↑n(I0) = Ξ(Ξ↑n−1(I0)), if n is a successor ordinal

• Ξ↑n(I0) =
⋃
j≤n Ξ↑j(I0), if n is a limit ordinal �

The operator Ξ is clearly monotonic with respect to the ≤ order when P
is fixed. Because of this, the sequence {P↑n(I)} has a least fixed point and is
computable via transfinite induction. In the reminder, let I∅ be a Herbrand
path structure such that for every literal h and path π

I∅, π 6|= h

E.0.35. Lemma. M is a model of (Od,Ot,P) iff Ξ(M) �M.

Proof. The proof follows the same outline than the proof of Lemma E.0.44. �

E.0.36. Corollary. Let α be the limit of the consequence operator Ξ. Then
Ξ↑α(I0) is a model of (Od,Ot,P).

155

Appendix E

E.0.37. Lemma (Minimal Model). The least model of a serial-Horn program
(Od,Ot,P) coincides with the limit of the sequence {Ξ↑n(I0)}. �

Proof. Let J be the limit of the sequence {Ξ↑n(I0)}, and M the least model of
(Od,Ot,P). We know that such model exists from [31]. By Lemma E.0.36 J is
a model of (Od,Ot,P). We need to proof that it is minimal with respect to �.
Thus, we will prove by transfinite induction on the number of steps needed to
construct J that

J �M

Base Case: Follows immediately since I0 is the empty interpretation.

Inductive Claim: For every k < n,

Ξ↑n(I0) �M

Inductive Case (Successor ordinal): Let Ξ↑n(I0) = Jn. Suppose Jn, π |= h.
Then either that data or transaction oracles enforce h to be true on π, or h was
derived by a rule. In the first case, since M is a model of the oracles, it trivially
follows that

M, π |= h (E.1)

Now, suppose Jn, π |= h was derived by a ground instance of rule of the form

h← G

where G is a serial conjunction. This means that Ξ↑n−1(I0), π |= G was derived
in at most n− 1 steps. Thus, by the inductive assumption

M(π)(G) = t

and since M is a model of (Od,Ot,P) it follows that

M, π |= h (E.2)

From (E.2) and (E.1), we can conclude that for every n

Ξ↑n(I0) �M

Inductive Case (limit ordinal): If n is a limit ordinal, then

Ξ↑n(I0) =
⋃
j≤n

Ξ↑j(I0)

by inductive hypothesis we know that for every j < n

Ξ↑j(I0) �M

156

APPENDIX E. WELL-FOUNDED SEMANTICS

Therefore all not -free literals that are true in Ξ↑j(I0) (for any j < n) are true
in M and all not -literals that are true in Ξ↑j(I0) are true in M. It follows that⋃

j≤n
Ξ↑j(I0) �M

thus
Ξ↑n(I0) �M

�

Least Models for T RPAD Specifications

In this section we prove that T RPAD specifications have a least partial model.

E.0.38. Definition. Given a not -free T RPAD specification (E ,P,S), let
(E ,P,S)+ denote the positive specification obtained from (E ,P,S) by replacing
all the postconditions literals and body literals of the from uπ, with tπ. Anal-
ogously, let (E ,P,S)− denote the positive program obtained from (E ,P,S) by
removing all the PADs and rules whose body includes uπ. �

E.0.39. Theorem (Unique LPM for not -free specifications).
If (E ,P,S) is a not -free specification, then (E ,P,S) has a Least Herbrand
Model, denoted LPM((E ,P,S)).

Proof.
Let

• M− be the least (2-valued) model of (E ,P,S)−

• M+ be the least (2-valued) model of (E ,P,S)+

We know that such models exist by Corollary E.0.33. Clearly (E ,P,S)− is a
sub-specification of (E ,P,S)+, thusM+ is also a model of (E ,P,S)−. But since
M− is the LM of (E ,P,S)−, we can conclude that

M− �M+ (E.3)

Recall that this implies that all not -free literals that are true in M− and also
true inM+. We construct the least modelM of (E ,P,S) as the path structure
such that any path π, and not -free literal h

M(π)(h) = t iff M−(π) |= h
M(π)(h) = f iff M+(π) 6|= h
M(π)(h) = u iff otherwise

(E.4)

157

Appendix E

We now prove that M is a model of (E ,P,S). First, it is clear that M is
well defined, since by E.3 it cannot be that for some path π, M−(π) |= h and
M+(π) 6|= h.

We proceed to show that M is a model of S, E and P

• Since M− is a model of S it follows that

if π B h ∈ S then M−(π) |= h and therefore M(π)(h) = t

if d1
α
 d2 ∈ S then M−(〈d1d2〉) |= h and therefore M(〈d1d2〉)(h) = t

Thus, M is a model of S

• Let λ = b1 ⊗ α⊗ b2 → b3 ⊗ α⊗ b4 be a PAD in E . We consider the cases
where λ is u-free and where it is not.

– Suppose that λ is u-free. Then λ is in both (E ,P,S)− and (E ,P,S)+.

Suppose that there is some path π, M(π) |= b1 ⊗ α ⊗ b2. It follows
that M−(π) |= b1 ⊗ α ⊗ b2. Since M− is a model of (E ,P,S)−, it
follows thatM−(π) |= b3⊗α⊗ b4, and thereforeM(π) |= b3⊗α⊗ b4.
This implies that M(π) |= λ.

Suppose that for some path π, M(π) 6|= b1 ⊗ α ⊗ b2, then trivially
M(π) |= λ.

Suppose that for some path π, M(π)(b1 ⊗ α ⊗ b2) = u. It follows
that π has the form d1d2, and there a (at least one) conjunct b in
b1 (or b2) such that M(d1)(b) = u (M(d2)(b) = u respectively).
For concreteness and simplicity suppose that there is only one b such
that M(d1)(b) = u, and b is in b1. Therefore, for every conjunct
b′ 6= b in b1 (or b2), we have that M(d1)(b′) = t (M(d2)(b′) = t re-
spectively). Thus, we can conclude that M+(d1)(b) = t, and more-
over M+(π) |= b1 ⊗ α ⊗ b2. Since M+ is a model of E , it follows
that M+(π) |= b3 ⊗ α ⊗ b4. And from E.4 we can conclude that
M(π)(b1 ⊗ α⊗ b2) ≥ u. This yields that M(π) |= λ.

– Now suppose that λ is not u-free. Thus then λ is in (E ,P,S)+ \
(E ,P,S)−. This implies that there is some conjunct b in b1 or b2 equal
to uπ. IfM(π) 6|= b1⊗α⊗b2, again,M(π) |= λ trivially. Clearly, it is
not possible thatM(π) |= b1⊗α⊗b2. SupposeM(π)(b1⊗α⊗b2) = u.
By E.4 we can conclude that M+(π)(b1 ⊗ α ⊗ b2) = t. Therefore,
since M+ is a model of E , it follows that M+(π)(b3 ⊗ α ⊗ b4) = t.
This yields thatM(π)(b3⊗α⊗b4) ≥ u, which proves thatM(π) |= λ.

158

APPENDIX E. WELL-FOUNDED SEMANTICS

From the previous facts we can conclude that M is a model of E ,

• The proof that M is a model of P is analogous to the proof above.

The proof that M is minimal and unique, is analogous to the proof of The-
orem 1 in [31] �

For convenient reference, we repeat the main definitions from Section 3.7.

E.0.40. Definition. [T RPAD-quotient] Let (E ,P,S) be a T RPAD specification,
and I a Herbrand path structure. By T RPAD-quotient of (E ,P,S) modulo I

we mean a new specification, (E,P,S)
I , which is obtained from (E ,P,S) by

• Replacing every literal of the form not b in P ∪ E with

tπ for every path π such that I(π)(not b) = t
uπ for every path π such that I(π)(not b) = u

• And then removing all the remaining rules and PADs that have a literal
of the form not b in the body such that I(π)(not b) = f for some path π.
�

E.0.41. Definition. [T RPAD Immediate Consequence Operator] The conse-
quence operator, Γ, for a T RPAD specification is defined by analogy with the
classical case:

Γ(I) = LPM(
(E ,P,S)

I
)

Suppose I∅ is the path structure that maps each path π to the empty Herbrand
interpretation in which all atoms are undefined. That is, for every path π and
literal f , we have I∅(π)(f) = u. The ordinal powers of the consequence operator
Γ are then defined inductively as follows:

• Γ↑0(I0) = I0

• Γ↑n(I0) = Γ(Γ↑n−1(I0)), if n is a successor ordinal

• Γ↑n(I0)(π) =
⋃
j≤n Γ↑j(I0), if n is a limit ordinal �

E.0.42. Definition. [Well-founded Model] The well-founded model of a
T RPAD specification (E ,P,S), written WFM((E ,P,S)), is defined as a limit of
the sequence {Γ↑n(I0)}. �

E.0.43. Lemma. The operator Γ is monotonic with respect to the information
order relation ≤ when (E ,P,S) is fixed. That is,

If I ≤ I′ then Γ(I) ≤ Γ(I′)

159

Appendix E

Proof. The proof of this lemma is by transfinite induction on the iterations of
the Γ operator.

Base Case (n=0): Follows from definition of Γ↑0.

Inductive Case (n=k+1, successor ordinal): For any m ≤ n, let Mm =
Γ↑m(I), and Nm = Γ↑m(I′). We need to show that

Mn ≤ Nn (E.5)

Let

• Mn− be the model of
(

(E,P,S)
Mn−1

)−
• Mn+ be the model of

(
(E,P,S)
Mn−1

)+

• N n− be the model of
(

(E,P,S)
Nn−1

)−
• N n− be the model of

(
(E,P,S)
Nn−1

)+

Observe that(
(E ,P,S)

Mn−1

)−((E ,P,S)

Mn−1

)+((E ,P,S)

N n−1

)−((E ,P,S)

N n−1

)+

(E.6)

are {not ,uπ}-free.1 Thus, adapting the results about least models of not -free
programs in [31], together with Corollary E.0.33 above, it follows that the least
model Mn and Nn are defined as follows: For any path π, and not -free literal
f

Mn(π)(f) = t iff Mn−(π) |= f
Mn(π)(f) = f iff Mn+(π) 6|= f
Mn(π)(f) = u iff otherwise

N n(π)(f) = t iff N n−(π) |= f
N n(π)(f) = f iff N n+(π) 6|= f
N n(π)(f) = u iff otherwise

The previous fact implies that it is enough to show that for any path π:

Mn−(π) ⊆ N n−(π)
Mn+(π) ⊇ N n+(π)

(E.7)

1 Recall that the models Mn−, Mn+, Nn−, and Nn+ are 2-valued.

160

APPENDIX E. WELL-FOUNDED SEMANTICS

From Lemmas E.0.30 and E.0.31, we can conclude that the T RPAD specifications
in (E.6) are equivalent to Horn-TR programs. This implies that these specifi-
cation are monotonic, in the sense that for any two specification A and B, such
that A is included in B, the models of A are also models of B. Thus, to prove
(E.7) we can prove that (

(E,P,S)
Mn−1

)−
⊆
(

(E,P,S)
Nn−1

)−(
(E,P,S)
Mn−1

)+
⊇
(

(E,P,S)
Nn−1

)+ (E.8)

We explore each of these cases in turn:

• Recall that (E,P,S)
Mn−1 does not contain any rule or PAD with a not -literal l

in the body such that Mn−1(π)(l) = f. In addition, recall that the not -

literals l in (E ,P,S) are replaced by uπ or tπ in (E,P,S)
Mn−1 depending on the

truth value of Mn−1(π)(l).

Let

b′1 ⊗ α⊗ b′2 → b′3 ⊗ α⊗ b′4 ∈
(E ,P,S)

Mn−1

where each conjunct b′ in b′i is the result of the transformation after taking
the quotient by Mn−1. That is, if b is not a not -literal, b′ = b, and if b is
a not -literal then b′ is equal to tπ or uπ depending on the truth value of

Mn−1(π)(b), with π a path. Therefore, if such rule is in
(

(E,P,S)
Mn−1

)−
as well,

it means then for every not -literal b′ in the in the pre/post-condition of the
PAD,2 we have that Mn−1(π)(l) = tπ for some path π. By the inductive
assumption we have that if Mn−1(π)(l) = t then Nn−1(π)(l) = t. From

the previous fact we can conclude that if a PAD is in
(

(E,P,S)
Mn−1

)−
, then it

is also in
(

(E,P,S)
Nn−1

)−
. Following a similar reasoning, we can conclude that

if a rule is in (E,P,S)
Mn−1

−
, then it is also in

(
(E,P,S)
Nn−1

)−
. Thus,

(
(E ,P,S)

Mn−1

)−
⊆
(

(E ,P,S)

N n−1

)−
• Following a similar reasoning as above, it is easy to show that a rule or a

PAD is in
(

(E,P,S)
Mn−1

)+
if for every not -literal l in the body of the rule, or

in the pre/post-condition of the PAD, we have that Mn−1(π)(l) ≥ u for
some path π.

2Recall that not -literals cannot occur in pre-effects or effects of PADs

161

Appendix E

By the inductive assumption we have that

if Mn−1(π)(li) = t then Nn−1(π)(li) = t

Recall that Mn−1(π) ≤ Nn−1(π) if all not -free literals that are true in
Mn−1(π) are true in Nn−1(π) and all not -literals that are true in Mn−1(π)
are true in Nn−1(π). Thus, if Mn−1(π)(li) = u then Nn−1(π)(li) can be
either f,u or t. The cases where Nn−1(π)(l) is u or t does not affect the

presence of the rules in
(

(E,P,S)
Mn−1

)+
. On the other hand, if Nn−1(π)(l) = f,

whichever rule/PAD that has l in its body will not be in
(

(E,P,S)
Mn−1

)+
.

From the previous facts we can conclude that(
(E ,P,S)

Mn−1

)+

⊇
(

(E ,P,S)

N n−1

)+

The previous facts prove (E.8), therefore E.7 follows. This yields (E.5) which in
turn implies the claim of the lemma for the successor ordinal.

Inductive Case (n, limit ordinal): If n is a limit ordinal, then

Ξ↑n(I) =
⋃
j≤n

Ξ↑j(I)

by inductive hypothesis we know that for every j < n

Ξ↑j(I) ≤ Ξ↑j(I′)

therefore it follows that all not -free literals that are true in Ξ↑j(I) are true in
Ξ↑j(I′) and all not -literals that are true in Ξ↑j(I) are true in Ξ↑j(I′). Thus we
can conclude that ⋃

j≤n
Ξ↑j(I) ≤

⋃
j≤n

Ξ↑j(I′)

from the previous fact we can conclude that

Ξ↑n(I) ≤ Ξ↑n(I′)

�

all not -free literals that are true in N1 are true in N2 and all not -literals
that are true in N1 are true in N2

E.0.44. Lemma. M is a model of (E ,P,S) iff Γ(M) �M.

162

APPENDIX E. WELL-FOUNDED SEMANTICS

Proof.

1. (→) :

Suppose that M is a model of (E ,P,S), we will show that M is a model of
(E,P,S)

M . Since Γ(M) is the least model of (E,P,S)
M , the claim of the lemma

will follow straightforwardly. To prove our claim, we check that M models
the set of premises, PADs, and rules in (E,P,S)

M in turn:

• Since S remains untouched after taking the quotient of (E ,P,S), and
M is a model of (E ,P,S), we can conclude that M is a model of S

• By definition of quotient, each PAD in (E,P,S)
M corresponds to a PAD

in (E ,P,S).

Let b′1⊗α⊗b′2 → b′3⊗α⊗b′4 be a PAD in (E,P,S)
M , where each conjunct

b′ in b′i is the result of the transformation after taking the quotient by
M. That is, if b is not a not -literal, b′ = b, and if b is a not -literal
then b′ is equal to tπ or uπ depending on the truth value of M(π)(b),
with π a path.

Since M is a model of (E ,P,S), we know that for every path 〈d1,d2〉

min{min{M(〈d1〉)(f) | f ∈ b1},min{M(〈d2〉)(f) | f ∈ b2}}
≤

min{min{M(〈d1〉)(f) | f ∈ b3},min{M(〈d2〉)(f) | f ∈ b4}}

By inspection of the quotient transformation, it is clear that for every
not -literal b in (E ,P,S), which is replaced by b′ after taking the
quotient modulo M

M(π)(b′) = M(π)(b)

This implies that

min{min{M(〈D1〉)(f) | f ∈ b′1},min{M(〈D2〉)(f) | f ∈ b′2}}
≤

min{min{M(〈D1〉)(f) | f ∈ b′3},min{M(〈D2〉)(f) | f ∈ b′4}}

Therefore M is a model of each PAD in (E,P,S)
M , and therefore it is a

model of E .

• The proof that M is a model of each rule in (E,P,S)
M is analogous to

the proof above.

From the previous facts we can conclude that M is a model of (E,P,S)
M .

Since Γ(M) is the least model of (E,P,S)
M , the claim follows.

163

Appendix E

2. (←) :

Now suppose Γ(M) �M. We need to show that M is a model of (E ,P,S).
We check that M models the set of premises, PADs, and rules in (E ,P,S)
in turn:

• Since by hypothesis Γ(M) �M, and Γ(M) is a model of S, it follows
that every premise in S is also satisfied in M. Thus, M is a model
of S.

• Let

λ = b1 ⊗ α⊗ b2 → b3 ⊗ α⊗ b4 ∈ (E ,P,S)

By definition of quotient, one of the following two statements holds:

(a) There is a PAD λ′ = b′1⊗α⊗ b′2 → b′3⊗α⊗ b′4 in (E,P,S)
M resulting

from transforming λ. Each conjunct b′ in b′i in λ′ is the result of
the transformation after taking the quotient by M.3

(b) The PAD λ is not transformed into any λ′ in (E,P,S)
M , and for

every path π there is some not -literal b in b1 or b2 such that
M(π)(b) = f.

We explore each case in turn:

– Suppose 2a holds for λ. Since for every not -literal b in (E ,P,S),
which is replaced by b′ after taking the quotient modulo M we
know that

M(π)(b′) = M(π)(b) (E.9)

and Γ(M) |= λ′, we know that

min{min{M(〈d1〉)(f) | f ∈ b1},min{M(〈d2〉)(f) | f ∈ b2}}
≤

min{min{M(〈d1〉)(f) | f ∈ b3},min{M(〈d2〉)(f) | f ∈ b4}}

And therefore, M |= λ.

– Suppose 2b holds for λ. Then, since the antecedent in λ is false
in every path, from (E.9) we can conclude that for every path π,
M(π) |= λ.

Therefore M is a model of each PAD in (E ,P,S), and therefore it is
a model of E .

• The proof that M is a model of each rule in P is analogous to the
proof above.

3Observe that for each PAD in (E ,P,S), the quotient generate possibly infinite numbers of
PADs

164

APPENDIX E. WELL-FOUNDED SEMANTICS

The previous facts imply that M is a model of (E ,P,S) �

E.0.45. Corollary. WFM((E ,P,S)) is a model of (E ,P,S).

Proof. By Definition 3.7.14, we have that

Γ(WFM((E ,P,S))) = WFM((E ,P,S))

Thus, from Lemma E.0.44, we can conclude that WFM((E ,P,S)) is a model
of (E ,P,S). �

The following definition is similar to the definition of unfounded sets in [79].

E.0.46. Definition. [N-unsupported] Let (E ,P,S) be a T RPAD specification.
A set S of pairs of the form (atom,path) is unsupported relative to N, denoted
N-unsupported, if for every pair (h, π) in S, N(π)(h) = f, or the following
conditions hold

1. The state-premise π B h 6∈ S

2. if h is a pda, and π has the form 〈d1,d2〉, then d1
h
 d2 6∈ S

3. for every Horn-rule in P of the form h← g1⊗ . . .⊗gk, if π has a split of of
the form π = π1 ◦ . . . ◦ πk, then for some body atom gi, the corresponding
pair (gi, πi) also belongs to S or N(πi)(gi) = f

4. if h is a fluent literal and π has the form 〈d〉, then for every PAD in E of
the form b1 ⊗ α⊗ b2 → b3 ⊗ α⊗ b4, the following must hold:

• if h is a conjunct in b3 then for every path ρ = 〈d,d′〉
– either (α, ρ) also belongs to S, or N(ρ)(α) = f; or

– b1 has a conjunct g such that N(π)(g) = f or (g, π) ∈ S (recall
that π = 〈d〉 here); or

– b2 has a conjunct g such that N(〈d′〉)(g) = f or (g, 〈d′〉) ∈ S.

• if h is a conjunct in b4 then for every path ρ = 〈d′,d〉:
– either (α, ρ) also belongs to S, or N(ρ)(α) = f; or

– b1 has a conjunct g such that N(〈d′〉)(g) = f or (g, 〈d′〉) ∈ S; or

165

Appendix E

– b2 has a conjunct g such that N(π)(g) = f or (g, π) ∈ S. �

E.0.47. Definition. The greatest unsupported set relative to N, denoted
U(E,P,S)(N), is the union of all sets that are unsupported relative to N. �

E.0.48. Lemma. Let I and I′ two partial Herbrand structures.

If I ≤ I′ then U(E,P,S)(I) ≤ U(E,P,S)(I
′)

Proof. The claim of the follows straightforwardly from the definition of greatest
unsupported set. �

For the next results we need the following notation. Let N be a partial
Herbrand Structure and π a path. Then

True(N)(π) = {h | N (π)(h) = t and h is not -free}
False(N)(π) = {h | N (π)(h) = f and h is not -free}
Ukn(N)(π) = {h | N (π)(h) = u and h is not -free}

In addition, we will overload the definitions of the sets True and False by using
them with 2-valued Herbrand structures.

We say that a literal a depends on a literal b if there is a rule of the form
a← G in P, and either (i) b is a conjunct in G, or (ii) there is a conjunct c in
G such that c depends on b.

The following lemma states that the unsupported set do no contain pairs of
the form (h, π) such that h is true in π.

In the following, let (E ,P,S)N = (E,P,S)
Γ↑N−1(I0)

E.0.49. Lemma. Let (E ,P,S) be a T RPAD. Then

True(WFM((E ,P,S)))(π) ∩ {h | (h, π) ∈ U(E,P,S)(WFM((E ,P,S))} = ∅

Proof. In the following, given an ordinal N , let us do some abuse of notation
and write Γ↑N to refer to Γ↑N (I0). Since (i) WFM((E ,P,S)) is the limit of the
Γ operator, (ii) Γ is monotonic by Lemma E.0.43, and (iii) by Lemma E.0.48,
if I ≤ I′ then U(E,P,S)(I) ≤ U(E,P,S)(I

′), we can conclude that it is enough to
prove that for every ordinal N , and every path π:

True(Γ↑N)(π) ∩ {h | (h, π) ∈ U(E,P,S)N (Γ↑N)} = ∅

Let A be any set of pairs (literal,path) such that

True(Γ↑N)(π) ∩ {h | (h, π) ∈ A} 6= ∅ (E.10)

We will prove by contradiction that A is not ΓN -unsupported. This implies that
U(E,P,S)N (Γ↑N) cannot intersect with {(h, π) | h ∈ True(Γ↑N)(π)} for any π.

166

APPENDIX E. WELL-FOUNDED SEMANTICS

We know that

True(Γ↑N)(π) = LM((E ,P,S)−N)(π)

Recall that (E ,P,S)−N is not -free and it does not contain propositions of the
form uρ for any path ρ, thus it has a least Herbrand (2-valued) model. In the
previous sections we proved that such model can be constructed iteratively in a
bottom-up fashion.

Let (Od−,Ot−) be the compliant oracles of (E ,P,S)−N . Let P− be the trans-
action bases of (E ,P,S)−N . Recall that by Lemmas E.0.30 and E.0.31, the spec-
ification (E ,P,S)−N has the same least model as (Od−,Ot−,P−).

Suppose that A is ΓN -unsupported. Let us choose the earliest step n in the
construction of the LM of (Od−,Ot−,P−) such that for some literal h and path
π we can derive

LM(Od−,Ot−,P−)(π) |= h and (h, π) ∈ A (E.11)

It follows that one of the next two statements hold

1. Neither the transaction nor the data oracle, (Od−,Ot−), enforce h to be
true in path π in LM(Od−,Ot−,P−).

2. Either the transaction or the data oracle, (Od−,Ot−), enforce h to be true
in path π in LM(Od−,Ot−,P−).

The proofs for both cases are similar. The former is by transfinite induction
on the number of steps needed to construct LM(Od−,Ot−,P−) and the later is
by induction on the number of steps needed to construct the oracles (Od−,Ot−).
For concreteness, suppose that oracles (Od−,Ot−) do not enforce h to be true
in π.

It follows that there is a rule in P− of the form h ← G, and G is true in
the n − 1 step in the path π. Since A is ΓN -unsupported and G is not false in
π, we can conclude from (E.11) that there is some conjunct gi ∈ G and a path
πi in some split of π such that (gi, π) ∈ A. However, by hypothesis, A does not
intersect with the Herbrand structure in the n − 1 step of the construction of
LM(Od−,Ot−,P−). Thus, A is not ΓN -unsupported.

From the previous facts, we can conclude that for every π

True(Γ↑N)(π) ∩ {h | (h, π) ∈ U(E,P,S)N (ΓN)} = ∅

�

The following lemma states that the unsupported set do no contain pairs of
the form (h, π) such that h is undefined in π.

167

Appendix E

E.0.50. Lemma. Let (E ,P,S) be a T RPAD. Then

Ukn(WFM((E ,P,S)))(π) ∩ {h | (h, π) ∈ U(E,P,S)(WFM((E ,P,S))} = ∅

Proof. Since (i) WFM((E ,P,S)) is the limit of the Γ operator, (ii) Γ is
monotonic by Lemma E.0.43, and (iii) by Lemma E.0.48, if I ≤ I′ then
U(E,P,S)(I) ≤ U(E,P,S)(I

′), we can conclude that it is enough to prove that
for every ordinal N , and every path π:

Ukn(Γ↑N+1)(π) ∩ {h | (h, π) ∈ U(E,P,S)N (Γ↑N)} = ∅

Observe that by construction of Γ↑N+1,

Ukn(Γ↑N+1)(π)
=

False(LM((E ,P,S)−N+1))(π) ∩ True(LM((E ,P,S)+
N+1))(π)

(E.12)

Let A be any set of pairs (literal,path) such that

Ukn(Γ↑N+1)(π) ∩ {h | (h, π) ∈ A} 6= ∅ (E.13)

We will prove by contradiction that A is not ΓN+1-unsupported. This implies
that {h | (h, π) ∈ U(E,P,S)N (Γ↑N)} cannot intersect with Ukn(Γ↑N+1)(π) for any
π.

Suppose that A is ΓN -unsupported. Before continuing with the proof, let us
switch to the oracalized version of (E ,P,S)+

N+1 and (E ,P,S)−N+1. Let (Od+,Ot+)

and (Od−,Ot−) the T RPAD compliant oracles of (E ,P,S)+
N+1 and (E ,P,S)−N+1

respectively. Let P+ and P− be the transaction bases of (E ,P,S)+
N+1 and

(E ,P,S)−N+1 respectively. Recall that by Lemmas E.0.30 and E.0.31, the specifi-

cations (E ,P,S)+
N+1 and (E ,P,S)−N+1 have the same least model as (Od+,Ot+,P+)

and (Od−,Ot−,P−) respectively.
Now, suppose that (h, π) ∈ Ukn(Γ↑N+1)(π) ∩ {h | (h, π) ∈ A. Let us choose

the earliest step n in the construction of the LM of (Od+,Ot+,P+) such that
we can derive

(1) LM(Od+,Ot+,P)(π) |= h
(2) LM(Od−,Ot−,P)(π) 6|= h

(E.14)

We know that such step exists since (h, π) ∈ Ukn(Γ↑N+1). From (1) above, it
follows that one of the next two statements hold

1. Neither the transaction nor the data oracle, (Od+,Ot+), enforce h to be
true in path π in LM(Od+,Ot+,P+).

2. Either the transaction or the data oracle, (Od+,Ot+), enforce h to be true
in path π in LM(Od+,Ot+,P+).

168

APPENDIX E. WELL-FOUNDED SEMANTICS

Both proofs are similar, the former one is by transfinite induction on the
number of steps needed to construct LM(Od+,Ot+,P+) and the later one is by
induction on the number of steps needed to construct the oracles (Od+,Ot+).
For concreteness, suppose that oracles (Od+,Ot+) do not enforce h to be true
in π.

It follows that there is a rule in P+ of the form h ← G, and G is true in
the n − 1 step of the LM construction in the path π. Observe that because
Γ is monotonic, it cannot be that ΓN (π)(h) = f, given that ΓN+1(π)(h) = u.
Thus, since A is ΓN -unsupported, we can conclude that there is some conjunct
gi ∈ G and a path πi in some split of π such that (gi, πi) ∈ A. However, by
hypothesis, A does not intersect with the Herbrand structure in the n− 1 step
of the construction of LM(Od+,Ot+,P+). Thus, A is not ΓN -unsupported.

This implies that U(E,P,S)N (Γ↑N)} cannot contain a pair (h, π) such that

h ∈ Ukn(Γ↑N+1)(π) for any path π �

E.0.51. Lemma. Let (E ,P,S) be a T RPAD specification. Then,

False(WFM((E ,P,S)))(π) ⊆ {h | (h, π) ∈ U(E,P,S)(WFM((E ,P,S)))}

Proof. Follows from the definition of unsupported set. �

E.0.52. Proposition. Let WFM((E ,P,S)) be the well-founded model of
(E ,P,S). Let U(E,P,S)(WFM((E ,P,S))) be the greatest unsupported set relative
to WFM((E ,P,S)). Then, for every path π

{h | (h, π) ∈ U(E,P,S)(WFM((E ,P,S)))} = False(WFM((E ,P,S)))(π)

Proof. From Lemma E.0.51, it follows that

False(WFM((E ,P,S)))(π) ⊆ {h | (h, π) ∈ U(E,P,S)(WFM((E ,P,S)))}

and from Lemmas E.0.49 and E.0.50, we can conclude that
U(E,P,S)(WFM((E ,P,S))) does not contain any pair (h, π) such that

WFM((E ,P,S))(π)(h) ≥ u

Thus, U(E,P,S)(WFM((E ,P,S))) contains the literals and paths which are false
in WFM((E ,P,S)) and nothing else. That is

False(WFM((E ,P,S)))(π) = {h | (h, π) ∈ U(E,P,S)(WFM((E ,P,S)))}

�

169

Appendix E

E.0.53. Theorem. WFM((E ,P,S)) is the least model of (E ,P,S).

Proof. By Corollary E.0.45, WFM((E ,P,S)) is a model of (E ,P,S). Suppose
that N is a model of (E ,P,S). We need to show that for every literal h and
path π.

WFM((E ,P,S))(π)(h) � N(π)(h)

To prove this, we will show that

1. True(WFM((E ,P,S))(π)) ⊆ True(N(π))

2. False(N(π)) ⊆ False(WFM((E ,P,S))(π)).

We prove each of these items in turn:

• Claim 1 can be shown using the monotonicity of the immediate conse-
quence operator Γ. That is,

True(I∅(π)) = ∅ ⊆ True(N)(π)
True(Γ↑1(I∅))(π) ⊆ True(Γ↑1(N))(π)

...
True(Γ↑n(I∅))(π) ⊆ True(Γ↑n(N))(π)

In addition, by Lemma E.0.43 we have that

True(Γ↑1(N))(π) ⊆ True(N)(π)
...

True(Γ↑n(N))(π) ⊆ True(Γ↑n−1(N))(π)

Therefore

True(Γ↑n(I∅))(π) ⊆ True(Γ↑n(N))(π) ⊆ True(N)(π)

and if α is a limit ordinal then

True(Γ↑α(I∅))(π) ⊆ True(N)(π)

Since True(WFM((E ,P,S)))(π) is the limit of the monotonically growing
sequence of True(Γ↑α(I∅))(π)’s, we conclude

True(WFM((E ,P,S)))(π) ⊆ True(N)(π) (E.15)

• To prove claim 2, we will show that the set

{(h, π) | h ∈ False(N)(π)} (E.16)

is unfounded with respect to I0. For convenience, we will denote {(h, π) |
h ∈ False(N)(π)} with U . To prove(E.16), let h be a not -free literal such
that (h, π) ∈ U .

170

APPENDIX E. WELL-FOUNDED SEMANTICS

1. If π B h were a state premise in S then h would have been true on π
and thus (h, π) would not be in U .

2. if d1
h
 d2 (where π = 〈d1,d2〉) were a run-premise in S then h

would have been true on 〈d1,d2〉, in N and thus (h, π) would not be
in U .

3. Suppose h← g1 ⊗ . . .⊗ gk ∈ P and consider a split π = π1 ◦ . . . ◦ πk.
Suppose that for none of the gis it is the case that (gi, π) ∈ U . Then
it must hold that N(π)(gi) is either t or u and thus so is N(π)(h),
contrary to the assumption that (h, π) ∈ U .

4. Suppose that (E ,P,S) has a PAD of the form b1⊗α⊗b2 → b3⊗α⊗b4,
π = 〈d〉, and h is a conjunct in b3 or b4.

– If h is a conjunct in b3, then for every path ρ = 〈d,d′〉 it must be
the case that N(ρ)(b3 ⊗ α⊗ b4) = f. Hence N(ρ)(b1 ⊗ α⊗ b2) =
f. But then, it must be the case that either N(ρ)(α) = f, or
there is a conjunct b′ in b1 such that N(〈d〉)(b′) = f, or for some
conjunct b′ in b2 it must be the case that N(〈d′〉)(b′) = f. By
Definition E.0.46, a

– If h is a conjunct in b4, we can similarly prove that for every
path ρ = 〈d′,d〉 either N(ρ)(α) = f, or there is a conjunct b′ in
b1 or b2 such that N(〈d〉)(b′) = f or N(〈d′〉)(b′) = f (whichever
applies).

The above four cases cover exactly what is required by Definition E.0.46
for U to be unsupported. If U is unsupported relative to I0 then it is
also an unsupported relative to any other path structure,
WFM((E ,P,S)) in particular. Since U(E,P,S)(WFM((E ,P,S))) is
the greatest unsupported set, we know that

U ⊆ U(E,P,S)(WFM((E ,P,S)))

By Proposition E.0.52, for every path π

{h | (h, π) ∈ U(E,P,S)(WFM((E ,P,S)))}
=

False(WFM((E ,P,S)))(π)

From this and (E.16) we conclude that for any path π,

False(N)(π) ⊆ False(WFM((E ,P,S)))(π)

which concludes the proof. �

171

Appendix E

Relation between the action theories in T RPAD with and
without not

In this section we establish the relation between the action theory in T RPAD

with respect to the action theory in T RPAD with default negation. We repeat
the main definitions for convenient reference:

E.0.54. Definition. [Simple Specification] We say that a specification (E ,P,S)
is simple if

• It makes no use of default negation.

• It has no interloping actions.

• There is no literal f such that there exists a path π where E ,P,S, π |= f
and E ,P,S, π |= neg f .

• For every database state identifier d and literal f , E ,P,S,d |= f or
E ,P,S,d |= neg f . �

We say that a partial Herbrand path structure I is 2 valued, if and only if
for every path π and not -free literal h, either I(π)(h) = t, or I(π)(h) = f.

E.0.55. Definition. We define the function 2val from simple partial Herbrand
path structures, to Herbrand path structures as follows:

2val(I)(π) = {f | I(π)(f) = t}

�

Since in T RPAD with default negation we allow interloping action, in the
general case we cannot have neither Causality frame axioms nor Backward Pro-
jection. However, since now we want to compare these two different action
theories for simple specifications, we add the Causality frame axioms and Back-
ward Projection to A(E) as defined in Section 3.4.

E.0.56. Lemma. Let (E ,P,S) be a simple specification. Let I be a model of
(A(E),P,S). For every not -free serial conjunction G,

if I, π |= G then 2val(I), π |= G

Proof. Follows straightforwardly from Definition 3.8.2. �

E.0.57. Theorem. Let (E ,P,S) be a simple specification. Let I be a model of
(A(E),P,S). Then 2val(I) is a model of (A(P ∪ E),S).

172

APPENDIX E. WELL-FOUNDED SEMANTICS

Proof. Since I is a model of (A(E),P,S), and (A(E),P,S) is simple, it follows
that

I(π)(not inconsistent) = t (E.17)

for every path π. Therefore, since not occurs in (A(E),P,S) only in Frame(E)
preceding the fluent inconsistent we can build a new equivalent specification
not − free. This can be done by replacing every not -literal of the form
not inconsistent by tπ for every path π. It is easy to see that I does not
contains undefined facts. From the previous fact and Lemma E.0.56, we can
conclude that 2val(I) |= E , 2val(I) |= P and 2val(I) |= S. To conclude the
proof of the theorem we will show that

2val(I) |= A(P ∪ E)

We consider each frame axiom in turn:

• Forward disablement frame axiom: We know that I is a model of the
following forward disablement frame axiom in A(E):

(inertial(g) ∧ not f1
g ∧ · · · ∧ not fng)⊗ g ⊗ α⊗ not inconsistent → α⊗ g

Since we do not have interloping actions, there can be at most one partially
defined action pg with the primitive effect g. Let fg be the precondition
of pg. Then, the PAD above is equivalent modulo I to

(inertial(g) ∧ not fg)⊗ g ⊗ α⊗ not inconsistent → α⊗ g

By (E.17), we can reformulate this frame axiom as

(inertial(g) ∧ not fg)⊗ g ⊗ α → α⊗ g (E.18)

Since every state is complete and consistent in I (by definition of simple
specifications), we can still rewrite axiom (E.18) as

(inertial(g) ∧ neg fg)⊗ g ⊗ α → α⊗ g (E.19)

Let pneg g the PAD with the primitive effect neg g. Let fneg g be the
precondition of pneg g. It is clear that

I(π)(inertial(g) ∧ neg fg) ≥ I(π)(inertial(g) ∧ neg fg ∧ neg fneg g)

Therefore, if I models the Forward Inertia Axiom in A(E), by Lemma
E.0.56 2val(I) has to model the the Forward Inertia Axiom in (A(P ∪
E),S).

• Backward disablement frame axiom: Analogous to the previous case.

173

Appendix E

• Forward Inertia axiom: By (E.17), we can reformulate this frame axiom
as

(inertial(h) ∧ h)⊗ α → α⊗ h (E.20)

Therefore, by Lemma E.0.56 it follows that 2val(I) models the Forward
Inertia axiom in (A(P ∪ E),S) as well.

• Backward Inertia axiom: Analogous to the previous case.

• Causality and Backward Projection. Trivially follows since they are syn-
tactically identical to the ones in (A(P ∪ E),S).

�

174

Appendix F
Proof of the reduction of the action
language L1 to T RPAD

In this appendix we prove soundness and completeness of the reduction of the
action language L1 to T RPAD developed in Chapter 4.

Soundness of the L1 reduction to T RPAD

Recall that the action theory A(P) for a transaction base P is defined as P ∪
Frame(P). In addition, recall that in this section inertial(f) is “always true”
for every fluent and every state. Thus, to avoid tedious repetition, we remove
the inertial predicate from every rule in the action theory.

Recall that the query language in L1 consist of hypothesis of the form

q = f after [a1, a2, . . . , an] at si

Therefore, to check soundness we restrict our query language to statements of
the form: a1 ⊗ a2 ⊗ · · · ⊗ an ⊗ f .

F.0.58. Theorem. (Soundness) Let D be a simple domain description. Let
Λ(D) = (P,S) be the T RPAD reduction of D, and α be a serial conjunction of
actions. Suppose that P,S,di . . .dn |= α⊗ f . Then D |= f after α at si.

Proof. The proof relies on the fact that T RPAD+

Transaction Logic has a sound
and complete proof theory. Observe that P,S,di . . .dn |= a2 ⊗ · · · ⊗ an if and

only if the set of premises {di
aj
 dj+1 | i ≤ j < n} is a subset of S; and by

construction this happens if and only if D contains the set of occurrence facts
{aj occurs at sj | i ≤ j < n}. From thee previous fact we can conclude that

175

Appendix F

P,S,di . . .dn |= α if and only if D |= α occurs at si. Thus, we only need to
prove that

if P,S,dn ` f1 . . . fm then D |= f1 . . . fm at sn

We will now prove the theorem by induction on the number N of steps
needed to derive

P,S,dn ` f1 . . . fm (F.1)

using the inference rules and the axioms presented in Section 3.3.
To avoid tedious repetitions, we write D |= f1 . . . fm at sn to represent the set
of statements D |= f1 at sn,...,D |= fm at sn.

Base case : N = 1. In that case, (F.1) can only be derived by the premise
inference rule, and (F.1) has the form P,S,dn ` f for some fluent literal f .
(Note that the No-Op axiom can not be used since () is not a fluent, and no
other inference rules (even the hypothetical rule) can be used to derive a sequent
in the first inference step.) By the construction of Λ, it follows that f at sn
∈ D. By definition of satisfaction in L1 we can conclude that D |= f at sn .

Induction step: N = k > 1 and we assume that whenever (F.1) can be
derived by the proof theory in less than k steps, then for every i = 1 . . .m,
D |= fi at sn.

To prove that the same holds also when (F.1) is derived using k steps, note
that the last step in the derivation must be an application of one of these rules
in F :

• The Forward Projection rule.

• The Decomposition rule.

• The Sequencing rule.

We are not considering the Horn inference rule because we do not have complex
actions or defined fluents in our reduction. We consider each of the cases listed
above in turn.

• Forward Projection: Suppose that (F.1) was derived via the Forward
Projection rule. This means that (F.1) was derived using a PAD p ∈ P
that belongs to one of the following types of rules:

– Causal PAD

– Forward Inertia

– Causality

– Forward Disablement

176

APPENDIX F. L1 TO T RPAD

– Backward Disablement

– Backward Inertia

– Backward Projection

Let us examine these cases one by one

– Causal PAD: Suppose (F.1) was derived via the Forward Projection
rule and p is a causal PAD. This implies that:

1. p has the form b1 ⊗ α→ α⊗ b2,

2. b2 = f1 ⊗ · · · ⊗ fm, and,

3. the following statements were derived in less than k steps:

(a) P,S,dn−1,dn ` α
(b) P,S,dn−1 ` b1

Item 1 implies that there is a causal law in D of the form

α causes b2 if b1

and b2 is a fluent literal. From Item 3a we can conclude that there is
a run-premise dn−1

α
 dn ∈ S. Thus α occurs at sn−1 ∈ D. By the

inductive hypothesis on Item 3b, we have that D |= b1 at sn−1. This
fact implies that b2 is an immediate effect1 of α in act2st(sit2act(sn−1)).
This means that b2 ∈ E+(act2st(sit2act(sn−1))) or b2 ∈ E−(act2st(sit2act(sn−1)))
depending on whether b2 is preceded by ¬ or not. Therefore, the def-
inition of Res yields b2 ∈ act2st(sit2act(sn−1) ◦ α) if b2 is a positive
fluent, or
b2 6∈ act2st(sit2act(sn−1) ◦ α) otherwise. From the previous facts, it
follows that D |= b2 at sn.

– Forward Inertia: Suppose (F.1) was derived via the Forward Pro-
jection rule and p is a Forward Inertia rule. This implies that:

1. p has the form: f ⊗ α→ α⊗ f
2. (F.1) has the form P,S,dn ` f
3. neither f nor neg f is a primitive effect of α, and,

4. the following statements were derived in less than k steps:

(a) P,S,dn−1 ` f
(b) P,S,dn−1,dn ` α

1 Recall that a fluent literal f is an immediate effect of an action a in a state σ, if there is
a causal law a causes f if f1 . . . fm in D, whose preconditions f1 . . . fm hold in σ.

177

Appendix F

Following the same reasoning as before, we can conclude that

α occurs at sn−1 ∈ D

and by the inductive hypothesis D |= f at sn−1. The definition of
satisfaction in L1 ensures that f ∈ act2st(sit2act(sn−1)). From Item
3 we have that neither f nor ¬f are effects of α; thus the definition
of E− yields f 6∈ E−(act2st(sit2act(sn−1))). From the definition of
Res, we can conclude that f ∈ act2st(sit2act(sn−1) ◦ α), and hence,
D |= f at sn.

– Causality: Suppose (F.1) was derived via the Forward Projection
rule and p is a Causality rule. This implies that:

1. p has the form: neg h⊗ β ⊗ h→ b1 ⊗ β,

2. The following statements were derived in less than k steps:

(a) P,S,dn,dn+1 ` β
(b) P,S,dn ` ¬h
(c) P,S,dn+1 ` h

Item 1 implies that there is a causal law b1⊗ β → β ⊗ b2 and h = b2.

From 2a we can conclude that there is a premise dn−1
β
 dn in

S. Thus, β occurs at sn is in D. By the inductive assumption
on 2b and 2c, we have that D |= ¬h at sn and D |= h at sn+1.
Since in L1 semantics, changes in the values of fluents can only
be caused by execution of actions it must be the case that h ∈
E+(act2st(sit2act(sn))). By the definition of Res it follows that
b1 ∈ act2st(sit2act(sn)). The previous fact implies that for every
f ∈ b1, D |= f at sn.

– Forward Disablement : Suppose (F.1) was derived via the Forward
Projection rule and p is a Forward Disablement rule.

Recall that due to the interloping assumption, there can be at most
one Causal PAD pf with the primitive effect f and at most one PAD
pneg f with the primitive effect neg f . Let qf be the precondition of
pf and qneg f the precondition of pneg f . This implies that:

1. p has the form: neg qf ∧ neg qneg f ⊗ f ⊗ α→ α⊗ f
2. (F.1) has the form P,S,dn ` f
3. The following statements were derived in less than k steps:

(a) P,S,dn−1,dn ` α, and

(b) P,S,dn−1 ` neg qf ∧ neg qneg f ⊗ f .

178

APPENDIX F. L1 TO T RPAD

(1) implies that there is a causal law inD of the form α causes f if qf.

From Item 3a we can conclude that α occurs at sn−1 ∈ D, and by
the inductive hypothesis on 3b,

∗ D |= ¬qf at sn−1.

∗ D |= ¬qneg f at sn−1.

∗ D |= f at sn−1.

Clearly f is not an immediate effect of α in (act2st(sit2act(sn−1))). In
particular, the definition of E− yields f 6∈ E−(act2st(sit2act(sn−1))).
Thus, by the definition of Res f ∈ act2st(sit2act(sn−1) ◦ α). From
the previous fact it follows that D |= f at sn.

– Backward Disablement : This case is completely symmetrical to the
Forward Disablement case.

– Backward Inertia : Suppose (F.1) was derived via the Forward Pro-
jection rule and p is a Backward Inertia rule.

1. p has the form: β ⊗ neg f → neg f ⊗ β
2. (F.1) has the form P,S,dn ` neg f2.

3. The following statements were derived in less than k steps:

(a) P,S,dn,dn+1 ` β, and

(b) P,S,dn+1 ` f .

From Item 3a we can conclude that β occurs at sn ∈ D, and by
the inductive hypothesis on 3b, we have that D |= ¬f at sn+1. The
cases where f is a positive literal or a negative literal are completely
symmetric. For concreteness, suppose f is a positive literal. Clearly
f is not an immediate effect of β in (act2st(sit2act(sn))). In partic-
ular, the definition of E− yields f 6∈ E−(act2st(sit2act(sn))). Thus,
by from the previous facts and the definition of Res, we can conclude
that f 6∈ act2st(sit2act(sn)). From the definition of satisfaction in
L1 It follows that D |= ¬f at sn.

– Backwards Projection: Suppose (F.1) is derived by a Backwards Pro-
jection rule p coming from a Backwards Projection rule.

This implies that:

1. p has the form: (∧ki=1,i 6=jb
i)⊗ β ⊗ b2 → neg bj ⊗ β

2. (F.1) has the form P,S,dn ` neg bj

3. The following statements were derived in less than k steps:

2Recall that negneg f = f

179

Appendix F

(a) P,S,dn,dn+1 ` β
(b) P,S,dn ` (∧ki=1,i 6=jb

i)

(c) P,S,dn+1 ` b2
(1) implies that there is a causal law inD of the form β causes b2 if (∧ki=1b

i).

From Item 3a it follows that there is a premise dn−1
β
 dn in

S. Thus, β occurs at sn is in D. By inductive hypothesis, D |=
b2 at sn+1 and D |= (∧ki=1,i6=jb

i) at sn. Suppose by contradiction

that bj ∈ act2st(sit2act(sn)). By the definition of Res, it must be the
case that b2 ∈ E+(act2st(sit2act(sn))), and hence D |= b2 at sn+1.
This contradicts the inductive hypothesis. Thus, it follows that
bj 6∈ act2st(sit2act(sn)) and therefore D |= bj at sn.

• Decomposition Rule : Suppose (F.1) was derived via the Decomposition
Rule rule. This implies that one of the following statements was derived
in less than k steps:

P,S,dn ` ψ ⊗ φ or P,S,dn ` φ⊗ ψ

where φ and ψ are serial conjunction of fluent literals. The two cases where
φ = f1 ⊗ · · · ⊗ fm or ψ = f1 ⊗ · · · ⊗ fm are completely symmetric. For
concreteness assume that it is the first case. Then by the inductive hy-
pothesis D |= φ ∧ ψ at sn. The inductive claim now follows by definition
of satisfaction in L1.

• Sequencing Rule : Suppose (F.1) was derived via the Sequencing Rule
rule. This implies that the following statements were derived in less than
k steps:

P,S,dn ` φ
P,S,dn ` ψ

where φ ⊗ ψ = f1 ⊗ · · · ⊗ fm . The inductive claim trivially follows from
the inductive hypothesis. This concludes the soundness proof. �

Completeness with respect to ΠD

Recall that in the LP reduction of L1, the symbol ¬ is replaced by neg .

F.0.59. Theorem. (Completeness with Respect to ΠD) Let D be a simple
domain description. Let Λ(D) = (P,S) be the T RPAD

D reduction of D. Suppose
ΠD |= true after(f, r, si). Then P,S,di |= r ⊗ f .

180

APPENDIX F. L1 TO T RPAD

The proof uses a similar technique than the one used in [8] to prove soundness of
their LP reduction Π. Relying in the fact that T RPAD

D has a sound and complete
reduction to LP , we can reformulate Theorem F.0.59 in terms of the LP reduc-
tion of T RPAD

D . Since we will use the mapping, db2stS , between database states
and sets of state-terms in the completeness theorem; we repeat the definition
of db2stS here for convenient reference.

First we define db2stS , as a correspondence between database states and
state-terms, as follows:

• db2stS(d) = sd, if d occurs in a run- or state-premise in S and S has no

run-premise of the form d0
α
 d, for some state d0. Here sd is the unique

LLP state constant that corresponds to the T RPAD
D state identifier d and

α is a pda.

• db2stS(d) = Result(α, s), if S has a run-premise of the form d0
α
 d, and

db2stS(d0) = s.

F.0.60. Theorem. Let D be a simple domain description. Let Λ(D) = (P,S)
be the T RPAD

D reduction of D, and let Γ(P,S) be the LP reduction of Λ(D).
Suppose ΠD |= true after(f, r, ti). Then Γ(P,S) |= Holds(f,Result(r, ti))

In order to prove Theorem F.0.60 we first prove the following lemmas. To
avoid repeating the same statement again and again, we assume that for every
database state di, db2stS(di) = ti.

F.0.61. Lemma. Let D be a simple domain description. Let Λ(D) = (P,S)
be the T RPAD

D reduction of D. Let I be a collection of formulas of the form
true at(f, si) s.t. Γ(P,S) |= Holds(f, ti). For any 0 ≤ i ≤ k, if the program
Hi ∪ I3 entails true after(f, r, si) then Γ(P,S) |= Holds(f,Result(r, ti))

Proof. The proof is by induction on the length of r. Since Λ(D) is sound
with respect to D, and Γ is sound with respect to Λ, it follows that Γ(P,S) |=
Holds(f, ti) implies that D |= f at si. Hence, by Proposition 4.1.12, the pro-
gram Hi ∪ I has a unique answer set S.

Base Case: Length of r is 0.
Suppose that true after(f, [], si) ∈ S, then from the rule (e1) in ΠD, we
can conclude that true at(f, si) ∈ S as well. The previous fact implies that
true at(f, si) ∈ I or true at(f, si) ∈ Hi. In the former case the claim of
the lemma follows from our assumption that true at(f, si) ∈ I implies that

3 Recall that Hi is the set of all ground instantiation of all rules of ΠD except for the Second
Inertia Axiom (SI) and the Description of the Explicit Path (AP), not containing any other
situation constants except si.

181

Appendix F

Γ(P,S) |= Holds(f, ti). In the latter case, i.e., true at(f, si) ∈ Hi, by inspec-
tion of the rules in ΠD, and by the rule (BC) in ΠD, it follows that f at si
∈ D. Therefore, we know that di B f ∈ S. Thus, by the rule Premises in Γ,
Holds(f, ti) ∈ Γ(P,S). It follows that Γ(P,S) |= Holds(f, ti).

Inductive Case: Suppose the claim of the lemma is true when the length of
r is less than n. Let us prove that it is true when the length of r is n.

Since the length of r is greater then zero, let us assume r = [a | r′]. Suppose
that true after(f, r, si) ∈ S. By inspection of the axioms in ΠD and Proposition
4.1.11, it is clear that true after(f, r, si) could be derived via the effect of actions
rule (e2), or by the inertia axioms rule (i1). We consider each case in turn:

• Suppose that true after(f, r, si) was derived via a ground instantiation of
the effect of actions rule of the form

true after(f, [a | r′], si) : − causes(a, f, p), all true after(p, r′, si)

This implies that:

– causes(a, f, p) ∈ S, and

– true after(g, r′, si) ∈ S for every g ∈ p.

From the inductive hypothesis we have that Γ(P,S) |= Holds(g,Result(r′, ti))
for every g ∈ p. Since D contains a causes f if p, it follows that
p⊗ a→ a⊗ f ∈ P. Thus

Holds(f,Result(a,Result(r′, ti))) : −Holds(p,Result(r′, ti)) ∈ Γ(P,S)

From the previous facts it follows that Γ(P,S) |= Holds(f,Result(r, ti)).

• Suppose that true after(f, r, si) was derived via a ground instantiation of
the inertia axioms rule of the form

true after(f, [a | r′], si) : − true after(f, r′, si),not ab(f, a, r′, si)

This implies that:

– true after(f, r′, si) ∈ S and

– ab(f, a, r′, si) 6∈ S

From the inductive hypothesis we have that Γ(P,S) |= Holds(f,Result(r′, ti)).
In addition we know that ab(f, a, r′, si) 6∈ S. From this last fact, it follows
that one false after(p, r′, si) ∈ S. This means that for any pair of action

182

APPENDIX F. L1 TO T RPAD

and fluents a, p, if causes(a,neg f, p) ∈ S then there is some g ∈ p s.t.
true after(neg g, r′, si) ∈ S (from i2 and Proposition 4.1.11). Thus, if
causes(a,neg f, p) ∈ S, from the inductive assumption we can conclude
that there is some g ∈ p s.t. Γ(P,S) |= Holds(neg g,Result(r′, ti)). By
the Forward Disablement rule in Frame(P) and the definition of Γ, it
follows that Γ(P,S) |= Holds(f,Result(r, ti)). �

F.0.62. Lemma. Let 0 ≤ i ≤ m ≤ k. Suppose Tm |= true after(f, r, si)
4.

Then Γ(P,S) |= Holds(f,Result(r, ti))

Proof. By induction on m

Base Case: Length of m is 0.
Conclusion of the lemma follows immediately from Lemma F.0.61.

Inductive Case: Clearly,

Tm = Tm−1 ∪ (lm ∪Hm). (F.2)

Notice that by Proposition 4.1.13 and the definition of splitting set (c.f. Section
2.2) we can conclude that

• Tm−1 has a unique answer set Bm−1

• Tm has an unique answer set Bm

• U = head(Tm−1) forms a splitting set for Tm

In particular, the bottom of Tm is Tm−1 and the top is (lm∪Hm). By Proposition
2.2.18, it follows that Bm is an answer set of Tm iff

Bm = Bm−1 ∪ C

where C is an answer set of the partial evaluation eU (lm ∪Hm, Bm−1)5 of (lm ∪
Hm) with respect to Bm−1.

By inductive hypothesis we have that

true after(f, r, si) ∈ Bm−1 then Γ(P,S) |= Holds(f,Result(r, ti)) (F.3)

4 Recall that Tm = H0 ∪ (l1 ∪ H1) ∪ · · · ∪ (lm ∪ Hm) where li (0 ≤ 0 ≤ k) is the rule
true at(f, si) : −true after(f, [ai−1], si−1)

5 Recall that eU (Π, X) is defined as follows. For each rule r ∈ Π such that (pos(r) ∩ U) ⊂
X and (neg(r)∩U)∩X = ∅ put in eU (Π, X) all the rules r′ that satisfy the following property
head(r′) = head(r), pos(r′) = pos(r) \ U, neg(r′) = neg(r) \ U

183

Appendix F

Therefore, to prove the claim of the theorem it is enough to prove that

true after(f, r, si) ∈ C then Γ(P,S) |= Holds(f,Result(r, ti)) (F.4)

which is equivalent to

eU (lm ∪Hm, Bm−1) |= true after(f, r, si)
then

Γ(P,S) |= Holds(f,Result(r, ti))
(F.5)

Observe that since U is a splitting set of Tm, and all the facts in the body
of the rules in Tm−1 ∪ lm are in U , it is easy to see that

eU (lm ∪Hm, Bm−1) = Im ∪Hm (F.6)

where

Im = {true at(f, sm) : Tm−1 |= true after(f, [am−1, sm−1])}

In other words, the partial evaluation consists of the rules in Hm together the
head of the rules in Tm−1 ∪ lm which are satisfied by Bm−1. By inductive
hypothesis if

Im |= true after(f, r, si) then Γ(P,S) |= Holds(f,Result(r, ti)) (F.7)

Therefore, Im satisfies the conditions of Lemma F.0.61 and hence

if Im ∪Hm |= true at(f, sm), then Γ(P,S) |= Holds(f,Result(ai−1, ti−1))
(F.8)

This, together with (F.6) and (F.7) above, prove F.5 and therefore the claim of
this Lemma. �

Now we are ready to prove our theorem stated at the beginning of this
section.

F.0.63. Theorem. Let D be a simple domain description. Let Λ(D) = (P,S)
be the T RPAD

D reduction of D, and let Γ(P,S) be the LP reduction of Λ(D).
Suppose ΠD |= true after(f, r, si). Then Γ(P,S) |= Holds(f,Result(r, s))

Proof. It is easy to see that Tk as defined in Lemma F.0.62 is the same as Π1
6.

Hence from Lemma F.0.62 it follows that, Π1 |= true after(f, r, s) implies that
Γ(P,S) |= Holds(f,Result(r, t)). By Proposition 4.1.11 Π1 and ΠD are equiv-
alent. Hence ΠD |= true after(f, r, s), then Γ(P,S) |= Holds(f,Result(r, t)) �

6 Recall that Π1 is the program obtained from ΠD by replacing (SI) and (AP) by
true at(F, si) : −true after(F, ai−1, si−1)

184

Appendix G
Proofs of the reduction of PSs
semantics to T RPAD

In this appendix we prove soundness of the reduction of the semantics of pro-
duction systems to T RPAD developed in Section 5.4.

In the remainder let PS = (T , L, R) be a production system, WM0 a con-
sistent1 initial working memory, and ΛPS = (E ,P,S) the T RPAD embedding of
PS.

For simplicity we present a ground version of the proofs. Lifting to the non-
ground case is done in a standard way (cf. [11]). Since in this setting we do not
have variables, we will disregard variable assignments.

G.0.64. Definition. We denote Λelem
PS the specification (E ,P′,S) where the

transaction base P′ ⊂ P consists of:

• The rules encoding the ontology (c.f. Item 2 in Section 5.4); and

• The inconsistency rules (c.f. Item 7 in Section 5.4).

We will usually omit the subscript in Λelem
PS . �

Intuitively, Λelem
PS filters out from ΛPS all the rules that do not affect transi-

tions: the Horn rules for the production rules, and the auxiliary rules for random
actions.

G.0.65. Definition. LetM be a Herbrand path structure in LPS, WM a work-
ing memory, and d a state identifier We define the sets factsM(d), facts(d),

1 Recall that a working memory WM is consistent with the ontology T if there is a T -
structure whose working memory is WM.

185

Appendix G

facts(WM), inertials(d) and inertialsM(d) to be the following set of PS fluents.

factsM(d) = {f | M(〈d〉) |= f and f ∈ LPS}
facts(d) = {f | E ,P,S,d |= f and f ∈ LPS}
facts(WM) = {f | T ,WM |= f and f is an atom in LPS}
inertials(d) = {f | E ,P,S,d |= inertial(f)}
inertialsM(d) = {f | M〈d〉 |= inertial(f)}

�

G.0.66. Lemma (Initial Equivalence).

facts(WM0) ≡ facts(d0)
inertials(d0) = WM0

(G.1)

Proof. Recall that the well-founded model of a T RPAD specification (E ,P,S)
is defined as the limit of the sequence {Γ↑n(I∅)} as stated in Definition 3.7.14.
The proof of this lemma is by transfinite induction on the iterations of the Γ
operator. We show that for every model Mi = Γ↑i(I∅), claim (G.1) holds.

Let I∅ be a Herbrand path structure such that for every literal h and path π

I∅(π)(h) = u

Γ↑1(I∅) The quotient of Λelem
PS (Λ from now on) by I∅, Λ1 = Λ

I∅
, is composed by

the following premises, rules and PADs:

1. Ontology, Inconsistency rules, Initial Database,and Actions:
remain as in Λ since they are not -free.

2. Frame Axioms: For every path π, predicate p ∈ P and pda α, the
frame axioms have one of the following forms

inertial(p(~c)) ∧ p(~c)⊗ α⊗ uπ →
α⊗ p(~c) ∧ inertial(p(~c))

inertial(p(~c)) ∧ p(~c ∧ ~c 6= ~e)⊗ α⊗ uπ →
α⊗ p(~c) ∧ inertial(p(~c))

 ∈ E
where the vector ~e is the one used to ground α.

Since Λ1 is not -free, by Theorem E.0.39 we know that it has a unique
least model

M1 = LPM (Λ1)

Let FS = {f | d0 B f ∈ S} and dtg(T) the Datalog program encoding the
ontology. From construction of Λ, we know that for every ground fluent f

f ∈ FS iff f ∈WM0

f ∈ inertialsM1(d0) iff f ∈WM0

186

APPENDIX G. PS TO T RPAD

Now, to continue the proof of the lemma, we explore the cases where the
fluents predicate symbols are in PDL and PPS .

• Let g be a PDL literal. Since

– there are no PAD in E that has pre-effects, and

– our DL language is Datalog rewritable (c.f. Definition 5.1.1),

it follows that

FS ∪ dtg(T) |= g iff T ,WM0 |= g

• Let g be a PPS literal. Since there are no PAD in E that has pre-
effects, and by definition of satisfaction in PS, it follows that

FS ∪ dtg(T) |= g iff T ,WM0 |= g iff g ∈WM0

From the previous facts we can conclude that

factsM1(d0) ≡ facts(WM0)
inertialsM1(d0) = WM0

Inductive Claim n = k + 1 (successor ordinal): Suppose that the claim of
the lemma holds for the first k iterations

Γ↑n(I∅): Let Mn = Γ↑n(I∅). Let M+
n and M−1 be the least models of Λ+

n and
Λ−n respectively as stated in Definition E.0.38. As shown in [31], the least
model Mn of Λn is defined as follows: For any path π, and not -free
literal f

Mn(π)(f) = t iff M−n (π)(f) = t
Mn(π)(f) = f iff M+

n (π)(f) = f
Mn(π)(f) = u iff otherwise

Following a similar reasoning as above, we can see that the truth value of
fluents inM−n (d0) andM+

n (d0) depend only on the premises and dtg(T).

Since (i) the premises and dtg(T) stay as they are after taking the quotient,
Λ

Γ↑n−1(I∅)
, and (ii) the claim of the lemma follows for Γ↑n−1(I∅) by inductive

assumption, we can conclude that the claim follows for Mn as well.

Inductive Claim (n, limit ordinal): If n is a limit ordinal, then

Ξ↑n(I0) =
⋃
j≤n

Ξ↑j(I0)

187

Appendix G

By inductive hypothesis we know that for every 0 < j < n

facts(WM0) ≡ factsΞ↑j(I0)(d0)

inertialsΞ↑j(I0)(d0) = WM0
(G.2)

Then it is clear that

facts(WM0) ≡ facts⋃
j≤n Ξ↑j(I0)(d0)

inertials⋃
j≤n Ξ↑j(I0)(d0) = WM0

(G.3)

Thus,
facts(WM0) ≡ factsΞ↑n(I0)(d0)

inertialsΞ↑n(I0)(d0) = WM0
(G.4)

�

To avoid tedious repetitions and to ease the presentations of the proofs, in
the reminder of the paper we will assume that the frame axioms have the general
form:

inertial(p(~c)) ∧ p(~c)⊗ α⊗ not inconsistent →
α⊗ p(~c) ∧ inertial(p(~c))

Observe that we do not lose generality with this assumption, since after the
grounding the second type of frame axiom can be seen as the PAD above.

G.0.67. Lemma (Soundness of Actions). Let β be a sequence of ground ac-
tions and α an action. Let dβ and dβ,α be database identifiers. Then there is a
working memory WMi such that::

1. WM0
β
�WMi,

2. facts(dβ) ⊆ facts(WMi),

3. If α = Insp(~c) then

facts(dβ,α) ⊆ facts((WMi ∪ {p(~c)}) \ {neg p(~c)})
inertials(dβ,α) ⊆ (WMi ∪ {p(~c)) \ {neg p(~c)} (G.5)

4. If α = delp(~c) and p ∈ PDL then

facts(dβ,α) ⊆ facts((WMi ∪ {neg p(~c)}) \ {p(~c)})
inertials(dβ,α) ⊆ (WMi ∪ {neg p(~c)) \ {p(~c)} (G.6)

5. If α = delp(~c) and p ∈ PPS then

facts(dβ,α) ⊆ facts(WMi \ {p(~c)})
inertials(dβ,α) ⊆WMi \ {p(~c)}

(G.7)

188

APPENDIX G. PS TO T RPAD

Proof. Recall that the well-founded model of a T RPAD specification (E ,P,S)
is defined as the limit of the sequence {Γ↑n(I∅)} as stated in Definition 3.7.14.
The proof of this lemma consists in showing that for every modelMi = Γ↑i(I∅)
the claim of the lemma holds. However, since we show that we reach a fix point
after the second iteration, it is enough to show that the claim holds in the first
two steps of of the construction of the well-founded model. In the following, we
will omit the subscript and superscript in Λelem

PS , and refer to it as Λ.
Let I∅ be an Herbrand path structure such that for every literal h and path π:

I∅(π)(h) = u

Γ↑1(I∅) The quotient of Λ by I∅, Λ1 = Λ
I∅

, is composed by the following rules
and PADs:

1. Ontology, Inconsistency rules, Initial Database, and Actions:
remain untouched since they are not -free.

2. Frame Axioms: For every path π, pda α, and predicate p ∈ LPS,
the frame axioms have the form

inertial(p(~X))⊗ p(~X)⊗ α⊗ uπ →
α⊗ p(~X)⊗ inertial(p(~X))

}
∈ E

Since Λ1 is not -free, it has a unique least model

M1 = LPM (Λ1)

LetM+
1 andM−1 be the least models of Λ+

1 and Λ−1 respectively as stated
in Definition E.0.38. By Theorem E.0.39, the least model M1 of Λ1 is
defined as follows: For any path π, and not -free literal f

M1(π)(f) = t iff M−1 (π)(f) = t
M1(π)(f) = f iff M+

1 (π)(f) = f
M1(π)(f) = u iff otherwise

Now we prove the claim of the lemma for the first iteration by induction
on the length n of the sequence of actions β, α.

Base Case n = 0: Follows from Lemma G.0.66.

Inductive Claim n = k+ 1: Suppose that the claim of the lemma holds
for all sequences β such that its length is smaller than n

189

Appendix G

Inductive Case n+ 1 (β, α) By definition of I∅

I∅(dβ,α)(inconsistent) = u

Therefore, we can conclude that for any fluent g and action α, the
frame axioms for the path 〈di,di+1〉 have the form:

inertial(g)⊗ g ⊗ α⊗ u〈di,di+1〉 →
α⊗ g ⊗ inertial(g)

}
∈ Λ1

Recall that all the rules and PADs with uπ in the body are removed
from Λ−1 . This means that Λ−1 does not contain any frame axiom.
Thus, for any fluent q(~w), if M1(dβ,α)(q(~w)) = t (and therefore
M1

−(dβ,α)(q(~w)) = t) then q(~w) must be a consequence of α to-
gether with dtg(T).

We consider each possible action α in turn:

1. Suppose α = delp(~c) and p ∈ PPS. Observe that neither the frame
axioms nor α can assert neither LPS facts nor inertial facts. From
the previous fact we can conclude that

inertialsM1(dβ,α) = ∅ ⊆WMi \ {p(~c)}

Thus, for every fluent f in LPS, if M1(dβ,α)(f) = t, it means
that the Datalog program dtg(T) entails f . This yields that

factsM1(dβ,α) = {f | dtg(T) entails f} ⊆ facts(WMi \ {p(~c)})

and from the inductive hypothesis and the definition of rule ap-
plication it follows that

WM0
β
�WMi

delDL
p (~c)
� WMi \ {p(~c)}

2. Suppose α = Insp(~c). since there are no frame axioms in Λ−1 , for
any fluent q(~w) if M1(dβ,α)(q(~w)) = t, it follows that either

• q(~w) = p(~c) or

• {p(~c)} ∪ dtg(T) |= q(~w).

In any of the two cases above, together with the observation that
only α can assert inertial facts, we can conclude that

factsM1(dβ,α) ⊆ facts({p(~c)}) ⊆WMi ∪ {p(~c)}
inertialsM1(dβ,α) = {p(~c)} ⊆WMi ∪ {p(~c)}

and from the inductive hypothesis and the definition of rule ap-
plication it follows that

WM0
β
�WMi

InsDL
p (~c)
� WMi ∪ {p(~c)}

190

APPENDIX G. PS TO T RPAD

3. If α = delp(~c) and p ∈ PDL, the proof is analogous to the case for
Ins above.

This proves that claim of the lemma follows for Γ↑1(I∅).

Γ↑2(I∅) Now take Λ2 = Λ
M1

, and letM+
2 andM−2 be the models of Λ+

2 and Λ−2
respectively. As before, we prove the claim of the lemma by induction on
the length n of β, α.

Base case n = 0: Follows from Lemma G.0.66.

Inductive case n+ 1 (β, α): We explore the cases where α = Insp(~c) and
α = delp(~c). To know which fluents are affected by the frame axioms
in the path 〈dβ,dβ,α〉, in each case we have to further explore all the
possible truth values of the fluent inconsistent in M1.

Now, we explore each case in turn:

1. Suppose α = Insp(~c). Now let us consider the possible truth
values of the fluent inconsistent in M1.

(a) Suppose that M1(dβ,α) |= inconsistent and therefore
M1(dβ,α)(not inconsistent)=f. This means that every frame
axiom for the path 〈dβ,dβ,α〉 is removed from Λ when we
take the quotient modulo M1. In addition, observe that

M1(dβ,α) |= inconsistent iff Λ−1 ,dβ,α |= inconsistent

Since Λ−1 does not contain any frame axiom in that path
〈dβ,dβ,α〉, this means that the state dβ,α is inconsistent in-
dependently of the frame axioms. Moreover, the truth value
of the fluents in LPS for the path 〈dβ,dβ,α〉 depend only on
the action α and dtg(T). That is, for any fluent q(~w)

if M2(dβ,α)(q(~w)) = t then
either p(~c) = q(~w) or {p(~c)} ∪ dtg(T) |= q(~w).

From the previous facts we can conclude that

M2(dβ,α) |= q(~w) iff M1(dβ,α) |= q(~w)

Thus, since the claim of the lemma follows forM1, we know
that the claim follows for M2.

191

Appendix G

(b) Suppose that M1(dβ,α) |= not inconsistent. Observe that:

M1(dβ,α) |= not inconsistent iff Λ+
1 ,dβ,α |= not inconsistent

Since Λ+
1 contains all the frame axioms in the path 〈dβ,dβ,α〉,

this means that there is no inconsistency between the action
α, the ontology, and all the frame axioms. It follows that
for every fluent g, except neg p(~c). the quotient of Λ byM1

contains the frame axioms:2

inertial(g)⊗ g ⊗ Insp(~c)⊗ t〈di,di+1〉 →
Insp(~c)⊗ g ⊗ inertial(g)

}
∈ E of Λ2

Thus,

if M2(dβ) |= inertial(g) ∧ g then M2(dβ,α) |= inertial(g) ∧ g

The previous fact, together with the inductive hypothesis and
soundness of dtg(T) with respect to T , implies that

factsM2(dβ,α) ⊆ facts(WMi ∪ {p(~c)})
inertialsM2(dβ,α) ⊆ (WMi ∪ {p(~c)})

and from the inductive hypothesis and the definition of rule
application it follows that

WM0
β
�WMi

Insp(~c)
� WMi ∪ {p(~c)}

(c) Suppose that M1(dβ,α)(inconsistent) = u. Observe as that

M1(dβ,α)(inconsistent) = u
iff

Λ−1 ,dβ,α |= inconsistent and Λ+
1 ,dβ,α |= not inconsistent

This means that the state dβ,α is inconsistent because of the
frame axioms, since Λ+

1 and Λ−1 agree on everything else. The
rest of the proof is analogous to the proof in Item 1a above.

2. Suppose α = delp(~c) and p ∈ PDL. This case completely symmet-
ric to the case 1 above.

3. Suppose that α = delp(~c) and p ∈ PPS. It is easy to see that
M2(dβ,α) |= q(~w) if and only if

• p(~c) 6= q(~w)

2Observe that since we are considering the ground version of the reduction, the two different
types of frame axioms collapse in one

192

APPENDIX G. PS TO T RPAD

• M1(dβ,α) |= not inconsistent, and

• M1(dβ) |= q(~w)⊗ inertial(q(~w))

The claim follows by a similar reasoning as above using the pre-
vious facts, the inductive hypotheses, and the definition of action
application.

This concludes the proof that the claim of the lemma follows for Γ↑2(I∅).

Γ↑3(I∅): Next we show thatM2 is a fixpoint of Γ. Take Λ3 = Λ
M2

, and letM3,

M+
3 andM−3 be the least models of Λ3, Λ+

3 and Λ−3 respectively. We need
to show that for every path π

M2(π) =M3(π)

Observe that for every n-path abstraction π (n > 1) and literal g, if
M2(π) |= g it means that

• g is an action atom

• π has the form 〈d1d2〉, and there is a run-premise of the form d1
g

d2 ∈ S

Since run-premises remain unchanged after taking the quotient of Λ, the
claim of the lemma follows straightforwardly for n-paths. Now we consider
paths of length 1.

We prove that for every database identifier d and sequence of actions ξ.

M2(dξ) =M3(dξ) (G.8)

The proof is by induction on the length n of ξ

Base Case n = 0: Follows from Lemma G.0.66.

Inductive Claim n = k + 1: Suppose that

M2(dξ) =M3(dξ)

for all sequences ξ of length smaller than n

Inductive Case (n) Follows by a simple reasoning by cases as above,
exploring the case where inconsistent is t, f or u in M2(dβ,α), and
α = Ins(f), or α = del(f). Intuitively, when inconsistent is t or u in
M2(dβ,α), only the effect of the action (if any) and the consequences
from the ontology are true in both, M2(dβ,α), and M3(dβ,α). On
the other hand, if inconsistent is f inM2(dβ,α), by applying inductive
hypothesis, using the frame axioms, and the definition of α one can
prove (G.8).

193

Appendix G

This concludes the proof of the lemma. �

G.0.68. Lemma (State Equivalence). Let Λelem = (E ,P,S), β be a se-
quence of ground actions and α a ground action. Suppose that the following
holds:

(1) WMi ≡ inertials(dβ)
(2) E ,S,P,dβ |= not inconsistent
(3) E ,S,P,dβ,α |= not inconsistent

Then

1. If α = Insp(~c) then

WMi ∪ {p(~c)} \ {neg p(~c)} ≡ inertials(dβ,α)

2. If α = delp(~c) and p ∈ PDL then

WMi ∪ {neg p(~c)} \ {p(~c)} ≡ inertials(dβ,α)

3. If α = delp(~c) and p ∈ PPS then

WMi \ {p(~c)} ≡ inertials(dβ,α)

Proof. LetM be the well-founded model of Λelem (Λ from now on). We explore
the cases where α = Insq(~w) and α = delp(~c).

1. Suppose α = Insp(~c). By hypothesis E ,S,P,dβ,α |= neg inconsistent, and
since α = Insp(~c), we have that for every fluent g 6= neg p(~c)

inertial(g)⊗ g ⊗ Insp(~c)⊗ t〈di,di+1〉 →
Insp(~c)⊗ g ⊗ inertial(g)

}
∈ (E ,P,S)

M
(G.9)

Recall that by the hypothesis

inertials(dβ) = WMi

From the previous facts it follows that for every fluent g 6= neg p(~c)

g ∈WMi implies that E ,S,P,dβ,α |= inertial(g) (G.10)

And the definition of Insp(~c) yields that

E ,S,P,dβ,α |= inertial(p(~c)) (G.11)

From Lemma G.0.67 it follows that for every fluent g

E ,S,P,dβ,α |= inertial(g) implies that g ∈WMi ∪ {p(~c)} \ {neg p(~c)}

The previous fact together with (G.10)and (G.11) above, imply that

inertials(dβ,α) = WMi ∪ {p(~c)} \ {neg p(~c)}

194

APPENDIX G. PS TO T RPAD

2. Suppose that α = delp(~c) and p ∈ PDL. This case completely symmetric
to the case 1 above.

3. Suppose that α = delp(~c) and p ∈ PPS. Since by hypothesis E ,S,P,dβ,α |=
neg inconsistent, for every fluent g 6= p(~c).

inertial(g)⊗ g ⊗ Insq(~w)⊗ tdβdβ,α →
a⊗ g ⊗ inertial(g)

}
∈ (E ,P,S)

M

From these facts, and following a similar reasoning as above we can con-
clude that

inertials(dβ,α) = WMi \ {p(~c)}

�

G.0.69. Lemma (Entailment Equivalence). Let d be a state identifier. Sup-
pose that

(1) WMi ≡ inertials(d)
(2) E ,S,P,d |= not inconsistent

Then
facts(WMi) ≡ facts(d)

Proof. Since

• the DL language used for the ontology T is Datalog rewritable,

• by hypotheses the fluents in inertials(d) are consistent with the ontology,
and

• satisfaction in T RPAD coincides with satisfaction in regular LP when con-
sidering fluents literals,

it follows that for any fluent h

dtg(T), inertials(d) |= h if and only if T ,WMi |= h

Therefore
facts(WMi) ≡ facts(d)

�

G.0.70. Lemma (Preservation: Λelem-ΛPS). Suppose

• ΛPS = (E ,P,S) and

195

Appendix G

• Λelem
PS = (E ,P′,S)

Then for every database identifier d

{f | f ∈ LPS and E ,P′,S,d |= f} = {f | f ∈ LPS and E ,P,S,d |= f}

Proof. Observe that the difference between ΛPS and Λelem are the rules in P\P′.
These rules define production rules (including the rule for random production
rules), and auxiliary fluents and actions like fireabler and loopr used in the rule
and complex action definitions. By inspection of the rules in ΛPS, it easy to see
that the literals defined by these rules appear neither in the body nor in the
head of any frame axiom, action definition, rule in dtg(T), or in the definition
of inconsistence. Thus, the truth value of the literals defined in P \ P′ do not
affect the truth value of LPS fluents in any 1-path π. The previous fact yields
the claim of the lemma. �

In the remainder of the section. we assume that the sets facts and inertials
use ΛPS instead of Λelem.

G.0.71. Lemma (Soundness of Sequences of actions). Let WMi be a work-
ing memory, α1 . . . αn actions, and di,di+1 . . .dn state identifiers such that the
following holds:

(1) facts(WMi) ≡ facts(di)
(2) E ,S,P,di . . .dn |= α1 ⊗ · · · ⊗ αn
(3) E ,S,P,dj |= not inconsistent with (j = i . . . n)

Then there is a working memory WMn such that

WMi
α1...αn
� WMn and

facts(WMn) ≡ facts(dn)

Proof. The claim of the lemma follows straightforwardly from soundness of
actions (Lemma G.0.67) and state and entailment equivalence (Lemmas G.0.68
and G.0.69), and preservation (Lemma G.0.71). �

Before continuing with the following lemma, recall that if φ = f1 ∧ · · · ∧ fn ∧
neg l1 . . .neg lm is a conjunction of fluent literals, then φ̂ denotes the TR-serial
conjunction ψ̂ = f1 ∧ · · · ∧ fm ∧ ∼ l1 ∧ · · · ∧ ∼ lm, where

∼ li =

{
not li if li is a PPS atom
neg li if li is a PDL atom

196

APPENDIX G. PS TO T RPAD

G.0.72. Lemma. Let φ be a ground conjunction of fluent literals in LPS, WM
be a working memory, and d a state identifier such that the following holds:

WM ≡ inertials(d)
E ,S,P,d |= not inconsistent

then
E ,S,P,d |= φ̂ if anf only if T ,WM |= φ

Proof. Since φ is a conjunction of fluents literals, it is enough to check that
the lemma holds for φ = f where f is a fluent literal. Observe that from the
hypothesis and Lemma G.0.69 we can conclude that

facts(WM) ≡ facts(d)

If f is a positive literal, or a DL negative literal, the claim follows from the
definition of facts. Suppose f = neg g and g is a positive literal whose predicate
symbol is in PPS.

• (→) Suppose
E ,S,P,d |= not g

Since facts(WM) ≡ facts(d), it is clear that g 6∈ WM. Therefore, from the
definition of satisfaction in PS we can conclude that

T ,WM |= neg g

• (←) Suppose
T ,WM |= neg g

Since facts(WM) ≡ facts(d) and E ,S,P,d |= not inconsistent, it follows
that

E ,S,P,d 6|= g

But since E ,S,P,d 6|= not inconsistent we know that there are no undefined
fluents in LPS. Otherwise inconsistent would be undefined in d. Then it
must be the case that

E ,S,P,d |= not g

This concludes the proof of the lemma. �

G.0.73. Proposition. Let WMi be a working memory, and di,di+1 . . .dn state
identifiers such that the following holds:

(i) WMi ≡ inertials(di)
(ii) E ,S,P,di . . .dn |= r
(iii) E ,S,P,di |= not inconsistent

197

Appendix G

Then there is a working memory WMn such that

WMi
r
↪→WMn and

WMn ≡ inertials(dn)

Proof. We explore the cases where r is a IF-THEN rule and where r is a FOR

rule.

• Suppose r is a IF-THEN rule. Applying the definition of r it follows that

E ,S,P,di . . .dn |= fireabler(~c)⊗ ψ̂r(~c)

for some elements ~c in the Herbrand universe. From the pervious fact we
can conclude that

(1) E ,S,P,di |= φ̂r(~c)

(2) E ,S,P,di |=
∨
p∈P inertial(p(~e)) ∧ (♦ψ̂r(~c)⊗ not inconsistent ∧

not inertial(p(~e)))

(3) E ,S,P,di . . .dn |= ψ̂r(~c)

Since WMi ≡ inertials(di), from (1) and Lemmas G.0.72 and G.0.69 it
follows that

T ,WMi |= φr(~c) (G.12)

and from (2) it follows that

E ,S,P,dn |= not inconsistent (G.13)

Moreover, from the previous fact, by inspection of the frame axioms in Λ
and the definition of inconsistent, it is easy to see that if for any j = i . . . n,
we have that E ,S,P,dj |= inconsistent then for every k = j + 1 . . . n, it
cannot be that E ,S,P,dj |= not inconsistent. Thus, we can conclude that
for every j = i . . . n

E ,S,P,dj |= not inconsistent (G.14)

Let WMn the working memory resulting from the application of ψ to WM.
Observe that since ψ̂r(~c) is a serial conjunction of pdas, we know it is
deterministic. Thus, from (3), (G.14), our hypothesis, and Lemma G.0.71
(soundness of actions) it follows that

WMn ≡ inertials(dn) (G.15)

and from (2) we know that there is a ground fluent g such that

g ∈WMi

g 6∈WMn
(G.16)

198

APPENDIX G. PS TO T RPAD

From (G.14), it follows that

WMn ∪ T is consistent (G.17)

The previous facts implies that there is a non-trivial consistent transition

WMi

ψ(~c)
� WMn

From the definition of fireability of simple rules, together with (G.12),
(G.16), (G.15) and (G.17) it follows that:

WMi
r
↪→WMn

• Suppose r is a FOR rule. Applying the definition of r it follows that

E ,S,P,didi+1 . . .dj . . .dn |= fireabler(~c1)⊗ add used(~c1)⊗ ψ̂r(~c1)⊗ loop r

for some elements ~c1 in the domain. From the pervious fact we can con-
clude that

(1) E ,S,P,di |= φ̂r(~c1)
(2) E ,S,P,di |= not used(~c1)

(3) E ,S,P,di |= (♦ψ̂r(~c1)⊗ not inconsistent)
(4) E ,S,P,didi+1 |= add used(~c1)

(5) E ,S,P,di+1 . . .dj |= ψ̂r(~c1)
(6) E ,S,P,dj . . .dn |= loop r

Since WMi ≡ inertials(di), from (1) and Lemmas G.0.72 and G.0.69 it
follows that

WMi, T |= φr(~c1) (G.18)

From (3) and again Lemmas G.0.72 and G.0.69 it follows that

E ,S,P,dj |= not inconsistent (G.19)

Moreover, from the previous fact, by inspection of the frame axioms in Λ
and the definition of inconsistent, we can conclude that for every k = i . . . j

E ,S,P,dk |= not inconsistent (G.20)

Let WMj the working memory resulting from the application of ψ to WM.
From the previous facts, our hypothesis and Lemma G.0.71 it follows that

WMj ≡ inertials(dj) (G.21)

199

Appendix G

From (G.20), and (G.21) it follows that

WMj ∪ T is consistent (G.22)

The previous facts implies that there is a consistent transition

WMi

ψ(~c1)
� WMj

Following the same reasoning with the rest of the state identifiers, and ob-
serving that the fluent used avoids firing the rule with the same assignment
twice, we can show that there are different vectors of elements ~c2 . . . ~cm
such that there are consistent transitions

WMi

ψ(~c1)...ψ(~cm)
� WMn

WMn ≡ inertials(dn)
(G.23)

Since we know that

E ,S,P,dn−1dn |= loop r

it must be that

E ,S,P,dn−1dn |= clean used

since clean used does not modify the truth value of any fluent whose predi-
cate symbol is in LPS, it follows that

E ,S,P,dn |= not∃ ~X : fireable r(~X)

This implies that either E ,S,P,dn |= not∃ ~X : φ̂(~X) or for every vector ~c

if E ,S,P,dn |= φ̂(~c) then

E ,S,P,dn 6|= (♦ψ̂(~c)⊗ not inconsistent) or E ,S,P,dn |= used(~c)

From the previous facts, and Lemmas G.0.72 and G.0.71 it follows that
r cannot be fire anymore in WMn without producing an inconsistency or
re-using an assigment. Thus, the definition of fireability of recursive rules,
the previous fact, and (G.22) and (G.23) yields that:

WMi
r
↪→WMn

this concludes the proof of the proposition. �

200

APPENDIX G. PS TO T RPAD

G.0.74. Theorem. Let (E ,P,S) be the T RPAD embedding of a consistent PS.
Suppose E ,P,S,d0 . . .d1 |= r1 ⊗ · · · ⊗ rn. Then there are working memories
WM1 . . .WMm, such that

WM0
r1
↪→WM1
...

WMm−1
rn
↪→WMm

Proof. Follows straightforwardly by induction on the length n of the serial
conjunction using Proposition G.0.73. �

G.0.75. Corollary. Let (E ,P,S) be the T RPAD embedding of a consistent PS.
Suppose E ,P,S,d0 . . .d1 |= act ⊗ · · · ⊗ act. Then there are working memories
WM1 . . .WMm, and rules r1 . . . rn such that

WM0
r1
↪→WM1
...

WMm−1
rn
↪→WMm

Proof. Follows straightforwardly by induction on the length n of the serial
conjunction using Theorem G.0.74. �

201

Bibliography

[1] Bonner A. and Kifer M., Transaction logic programming, Int’l Confer-
ence on Logic Programming (Budapest, Hungary), MIT Press, June 1993,
pp. 257–282.

[2] Serge Abiteboul, Richard Hull, and Victor Vianu, Foundations of databases,
Addison-Wesley, 1995.

[3] Darko Anicic, Paul Fodor, Roland Stühmer, and Nenad Stojanovic, An ap-
proach for data-driven logic-based complex event processing, The 3rd ACM
International Conference on Distributed Event-Based Systems (DEBS),
2009.

[4] K. R. Apt and M. H. van Emden, Contributions to the theory of logic
programming, J. ACM 29 (1982), 841–862.

[5] F. Baader, S. Brandt, and C. Lutz, Pushing the EL envelope, Proceedings
of the Nineteenth International Joint Conference on Artificial Intelligence
IJCAI-05 (Edinburgh, UK), Morgan-Kaufmann Publishers, 2005.

[6] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi,
and Peter F. Patel-Schneider (eds.), The description logic handbook, Cam-
bridge University Press, 2003.

[7] C. Baral and M. Gelfond, Representing concurrent actions in extended logic
programming, Proceedings of the 13th international joint conference on Ar-
tifical intelligence - Volume 2 (San Francisco, CA, USA), Morgan Kaufmann
Publishers Inc., 1993, pp. 866–871.

[8] C. Baral, M. Gelfond, and A. Provetti, Representing actions: Laws, obser-
vations and hypotheses, Journal of Logic Programming (1997).

203

Bibliography Appendix G

[9] C. Baral and J. Lobo, Characterizing production systems using logic pro-
gramming and situation calculus, http://www.public.asu.edu/~cbaral/
papers/char-prod-systems.ps, 1995.

[10] A. Bonner and M. Kifer, Applications of transaction logic to knowledge
representation, Proceedings of the International Conference on Temporal
Logic (Bonn, Germany), Lecture Notes in Artificial Inteligence, no. 827,
Springer-Verlag, July 1994, pp. 67–81.

[11] A.J. Bonner and M. Kifer, Transaction logic programming (or a logic
of declarative and procedural knowledge), Tech. Report CSRI-323, Uni-
versity of Toronto, November 1995, http://www.cs.sunysb.edu/~kifer/
TechReports/transaction-logic.pdf .

[12] Anthony Bonner and Michael Kifer, A logic for programming database
transactions, Logics for Databases and Information Systems (J. Chomicki
and G. Saake, eds.), Kluwer Academic Publishers, March 1998, pp. 117–
166.

[13] Anthony J. Bonner and Michael Kifer, Applications of transaction logic to
knowledge representation, ICTL, 1994, pp. 67–81.

[14] Alexander Borgida, John Mylopoulos, and Raymond Reiter, On the frame
problem in procedure specifications, IEEE Trans. Software Eng. 21 (1995),
no. 10, 785–798.

[15] TIBCO BusinessEvents, http://www.tibco.com/products/business-
optimization/complex-event-processing/businessevents/businessevents.jsp.

[16] Baral C. and Gelfond M., Reasoning about intended actions, Proceedings
of the 20th national conference on Artificial intelligence - Volume 2, AAAI
Press, 2005, pp. 689–694.

[17] Baral C. and Gelfond Michael, Reasoning agents in dynamic domains,
pp. 257–279, Kluwer Academic Publishers, Norwell, MA, USA, 2000.

[18] Diego Calvanese, Jeremy Carroll, Giuseppe De Giacomo, Jim Hendler, Ivan
Herman, Bijan Parsia, Peter F. Patel-Schneider, Alan Ruttenberg, Uli Sat-
tler, and Michael Schneider, OWL 2 web ontology language profiles, Rec-
ommendation, W3C, 2007, http://www.w3.org/2007/OWL/wiki/Profiles.

[19] Diego Calvanese, Evgeny Kharlamov, Werner Nutt, and Dmitriy
Zheleznyakov, Evolution of dl-lite knowledge bases, Proceedings of the 9th
International Semantic Web Conference (ISWC’10) (Shanghai, China) (Pe-
ter F. Patel-Schneider, Yue Pan, Pascal Hitzler, Peter Mika, Lei Zhang

204

http://www.public.asu.edu/~cbaral/papers/char-prod-systems.ps
http://www.public.asu.edu/~cbaral/papers/char-prod-systems.ps

Bibliography Bibliography

0007, Jeff Z. Pan, Ian Horrocks, and Birte Glimm, eds.), Springer, 2010,
pp. 112–128.

[20] ONTORULE: Audi Use case, http://ontorule-project.eu/deliverable-
videos/d35-pr-audi-use-case-ibm-video.

[21] W. Chen, M. Kifer, and D.S. Warren, HiLog: A foundation for higher-
order logic programming, Journal of Logic Programming 15 (1993), no. 3,
187–230.

[22] Carlos Viegas Damásio, José Júlio Alferes, and João Leite, Declarative se-
mantics for the rule interchange format production rule dialect, Proceed-
ings of the 9th international semantic web conference on The semantic
web - Volume Part I (Berlin, Heidelberg), ISWC’10, Springer-Verlag, 2010,
pp. 798–813.

[23] Hasan Davulcu, Michael Kifer, C. R. Ramakrishnan, and I. V. Ramakrish-
nan, Logic based modeling and analysis of workflows, PODS, 1998, pp. 25–
33.

[24] Hasan Davulcu, Michael Kifer, and I. V. Ramakrishnan, Ctr-s: a logic for
specifying contracts in semantic web services, WWW, 2004, pp. 144–153.

[25] Jos de Bruijn and Mart́ın Rezk, A logic based approach to the static analysis
of production systems, RR, 2009, pp. 254–268.

[26] G. De Giacomo, M. Lenzerini, A. Poggi, and R. Rosati, On instance-level
update and erasure in description logic ontologies, J. Log. and Comput. 19
(2009), 745–770.

[27] Roman Dumitru and Kifer Michael, Semantic web service choreography:
Contracting and enactment, International Semantic Web Conference, 2008,
pp. 550–566.

[28] Thomas Eiter, Giovambattista Ianni, Thomas Lukasiewicz, Roman Schind-
lauer, and Hans Tompits, Combining answer set programming with descrip-
tion logics for the semantic web, Artif. Intell. 172 (2008), 1495–1539.

[29] E. Allen Emerson, Temporal and modal logic, HANDBOOK OF THEO-
RETICAL COMPUTER SCIENCE, Elsevier, 1995, pp. 995–1072.

[30] R. E. Fikes and N. J. Nilsson, Strips: A new approach to the applica-
tion of theorem proving to problem solving, Readings in Planning (J. Allen,
J. Hendler, and A. Tate, eds.), Kaufmann, San Mateo, CA, 1990, pp. 88–97.

205

Bibliography Appendix G

[31] Paul Fodor and Michael Kifer, Transaction logic with defaults and argumen-
tation theories, ICLP (Technical Communications) (John P. Gallagher and
Michael Gelfond, eds.), LIPIcs, vol. 11, Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2011, pp. 162–174.

[32] Charles Forgy, Rete: A fast algorithm for the many patterns/many objects
match problem, Artif. Intell. 19 (1982), no. 1, 17–37.

[33] Amalia F.Sleghel, An optimizing interpreter for conccurent transaction
logic, Master’s thesis, University of Toronto, 2000.

[34] M. Gelfond and V. Lifschitz, The stable model semantics for logic pro-
gramming, Proceeding of the Fifth Logic Programming Symposium, 1988,
pp. 1070–1080.

[35] M. Gelfond and V. Lifschitz, Representing action and change by logic pro-
grams, Journal of Logic Programming 17 (1993), 301–322.

[36] Enrico Giunchiglia and Vladimir Lifschitz, An action language based on
causal explanation: Preliminary report, In Proc. AAAI-98, AAAI Press,
1998, pp. 623–630.

[37] John Grant and Jack Minker, The impact of logic programming on
databases, Commun. ACM 35 (1992), 66–81.

[38] Turner H., Representing actions in default logic: A situation calculus ap-
proach, In Proceedings of the Symposium in honor of Michael Gelfond’s
50th birthday (also in Common Sense 96, 1996.

[39] S. Hanks and D. McDermott, Nonmonotonic logic and temporal projection,
Artif. Intell. 33 (1987), no. 3, 379–412.

[40] Steve Hanks and Drew McDermott, Nonmonotonic logic and temporal pro-
jection, Artif. Intell. 33 (1987), 379–412.

[41] Stijn Heymans, Thomas Eiter, and Guohui Xiao, Tractable reasoning with
dl-programs over datalog-rewritable description logics, European Conference
on Artificial Intelligence, 2010, pp. 35–40.

[42] Ian Horrocks, Ontologies and the semantic web, Commun. ACM 51 (2008),
58–67.

[43] Samuel Hung, Transaction logic prototype, 1996.

[44] Samuel Y.K. Hung, Implementation and performance of transaction logic
in prolog, Master’s thesis, University of Toronto, 1996.

206

Bibliography Bibliography

[45] Ullrich Hustadt, Boris Motik, and Ulrike Sattler, Reasoning in description
logics by a reduction to disjunctive datalog, J. Autom. Reason. 39 (2007),
351–384.

[46] Daniela Inclezan, Modular action language alm, Proceedings of the 25th
International Conference on Logic Programming (Berlin, Heidelberg), ICLP
’09, Springer-Verlag, 2009, pp. 542–543.

[47] Johan and de Kleer, An assumption-based tms, Artificial Intelligence 28
(1986), no. 2, 127 – 162.

[48] McCarthy John, Situations, actions, and causal laws, Tech. Report Memo
2, Stanford Artificial Intelligence Project, Stanford University, 1983.

[49] IBM JRules, http://www.ibm.com/software/integration/business-rule-
management/jrules-family/.

[50] M. Kifer, FLORA-2: An object-oriented knowledge base language, The
FLORA-2 Web Site, http://flora.sourceforge.net.

[51] R Kowalski and M Sergot, A logic-based calculus of events, New Gen. Com-
put. 4 (1986), 67–95.

[52] Robert Kowalski and Fariba Sadri, Integrating logic programming and pro-
duction systems in abductive logic programming agents, Proceedings of the
3rd International Conference on Web Reasoning and Rule Systems, RR ’09,
Springer-Verlag, 2009, pp. 1–23.

[53] Markus Krötzsch, Sebastian Rudolph, and Peter H. Schmitt, On the se-
mantic relationship between datalog and description logics, Proceedings of
the Fourth international conference on Web reasoning and rule systems
(Berlin, Heidelberg), RR’10, Springer-Verlag, 2010, pp. 88–102.

[54] Peifung E. Lam, John C. Mitchell, and Sharada Sundaram, A formalization
of HIPAA for a medical messaging system, Proceedings of the 6th Inter-
national Conference on Trust, Privacy and Security in Digital Business
(Berlin, Heidelberg), TrustBus ’09, Springer-Verlag, 2009, pp. 73–85.

[55] Georg Lausen, Bertram Ludaescher, and Wolfgang May, On active deduc-
tive databases: The statelog approach, In Transactions and Change in Logic
Databases, Springer-Verlag, 1998, pp. 69–106.

[56] Hector J. Levesque, Raymond Reiter, Yves Lespérance, Fangzhen Lin, and
Richard B. Scherl, Golog: A logic programming language for dynamic do-
mains, J. Log. Program. 31 (1997), no. 1-3, 59–83.

207

Bibliography Appendix G

[57] Vladimir Lifschitz and Hudson Turner, Splitting a logic program, ICLP,
1994, pp. 23–37.

[58] H. Liu, C. Lutz, M. Milicic, and F. Wolter, Updating description logic
ABoxes, Proceedings of the Tenth International Conference on Principles of
Knowledge Representation and Reasoning (KR’06) (Patrick Doherty, John
Mylopoulos, and Christopher Welty, eds.), AAAI Press, 2006, pp. 46–56.

[59] John Wylie Lloyd, Foundations of logic programming, 2nd ed., Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 1993.

[60] J.W. Lloyd, Foundations of logic programming (second edition), Springer-
Verlag, 1987.

[61] John McCarthy and Patrick J. Hayes, Some philosophical problems from the
standpoint of artificial intelligence, Machine Intelligence 4 (B. Meltzer and
D. Michie, eds.), Edinburgh University Press, 1969, reprinted in McC90,
pp. 463–502.

[62] Thielscher Michael, Flux: A logic programming method for reasoning
agents, TPLP 5 (2005), no. 4-5, 533–565.

[63] Boris Motik, Description Logics and Disjunctive Datalog—More Than just
a Fleeting Resemblance?, Proc. of the 4th Workshop on Methods for Modal-
ities (M4M-4) (Berlin, Germany) (Holger Schlingloff, ed.), Informatik-
Berichte der Humboldt-Universität zu Berlin, vol. 194, December 1–2 2005,
pp. 246–265.

[64] Boris Motik and Riccardo Rosati, Reconciling Description Logics and Rules,
Journal of the ACM 57 (2010), no. 5, 1–62.

[65] Erik T. Mueller, Commonsense reasoning, Morgan Kaufmann, 2006.

[66] D. Pearce and G. Wagner, Logic programming with strong negation, Pro-
ceedings of the international workshop on Extensions of logic programming
(New York, NY, USA), Springer-Verlag New York, Inc., 1991, pp. 311–326.

[67] T. C. Przymusinski, On the declarative semantics of deductive databases
and logic programs, pp. 193–216, Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1988.

[68] Teodor Przymusinski, Well-founded and stationary models of logic pro-
grams, Annals of Mathematics and Artificial Intelligence 12 (1994), 141–
187.

[69] Teodor C. Przymusinski, Stable semantics for disjunctive programs, New
Generation Computing 9 (1991), 401–424.

208

Bibliography Bibliography

[70] Louiqa Raschid, A semantics for a class of stratified production system
programs, J. Log. Program. 21 (1994), no. 1, 31–57.

[71] Reiter Raymond, The frame problem in situation the calculus: a simple
solution (sometimes) and a completeness result for goal regression, pp. 359–
380, Academic Press Professional, Inc., San Diego, CA, USA, 1991.

[72] Mart́ın Rezk and Werner Nutt, Combining production systems and ontolo-
gies, The Fifth International Conference on Web Reasoning and Rule Sys-
tems RR’11, Springer, 2011.

[73] Dumitru Roman and Michael Kifer, Reasoning about the behavior of seman-
tic web services with concurrent transaction logic, VLDB, 2007, pp. 627–
638.

[74] 3-DNS Production Rules, http://support.f5.com/kb/en-
us/archived products/3-dns/manuals/product/3dns4 5 10ref/3dns prodrules.html.

[75] Amalia F. Sleghel, Concurrent transaction logic prototype, 2000.

[76] Michael Thielscher, Reasoning robots: the art and science of programming
robotic agents, Applied logic series, Springer, 2005.

[77] Jeffrey D. Ullman, Principles of database and knowledge-base systems, vol-
ume ii, Computer Science Press, 1989.

[78] M.H. van Emden and R.A. Kowalski, The semantics of predicate logic as a
programming language, Journal of ACM 23 (Oct. 1976), no. 4, 733–742.

[79] A. Van Gelder, K.A. Ross, and J.S. Schlipf, The well-founded semantics for
general logic programs, Journal of the ACM 38 (1991), no. 3, 620–650.

[80] W3C, 2010, Available from http://www.w3.org/TR/rif-prd/.

[81] Marianne Winslett, Updating logical databases, Cambridge University
Press, New York, NY, USA, 1990.

[82] G. Yang, M. Kifer, and C. Zhao, FLORA-2: A rule-based knowledge rep-
resentation and inference infrastructure for the Semantic Web, Interna-
tional Conference on Ontologies, Databases and Applications of Semantics
(ODBASE-2003), Lecture Notes in Computer Science, vol. 2888, Springer,
November 2003, pp. 671–688.

[83] Dmitry S. Yershov and Steven M. LaValle, Sufficient conditions for the
existence of resolution complete planning algorithms, WAFR, 2010, pp. 303–
320.

209

http://www.w3.org/TR/rif-prd/

Bibliography Appendix G

[84] R. M. Young, Production systems in cognitive psychology, International
Encyclopedia of the Social and Behavioral Sciences (2001), 12143–12146.

[85] Carlo Zaniolo, A unified semantics for active and deductive databases,
Workshop on Rules In Database Systems (RIDS-93), Springer Verlag, 1993,
pp. 271–287.

210

Publications

Journal Papers

• Mart́ın Rezk and Michael Kifer, Transaction Logic with Partially Defined
Actions. Submitted to Journal on Data Semantics, 2011.

Refereed Conference Publications

• Mart́ın Rezk and Michael Kifer, Formalizing Production Systems with
Rule-based Ontologies. To Appear in the proceedings of the Seventh In-
ternational Symposium on Foundations of Information and Knowledge
Systems, 2012.

• Mart́ın Rezk and Michael Kifer, Reasoning with Actions in Transaction
Logic. In Proc. of the Fifth International Conference on Web Reasoning
and Rule Systems, LNCS, 201-216, Ireland, August 29-30, 2011.

• Mart́ın Rezk and Michael Kifer, On the Equivalence Between the L1 Action
Language and T RPAD. In Proc. of the Fifth International Conference on
Web Reasoning and Rule Systems, LNCS, 185-200, Ireland, August 29-30,
2011..

• Mart́ın Rezk and Werner Nutt, Combining Production Systems and On-
tologies. In Proc. of the Fifth International Conference on Web Reasoning
and Rule Systems, LNCS, 287-293, Ireland, August 29-30, 2011.

• Jos de Bruijn and Mart́ın Rezk, A Logic Based Approach to the Static
Analysis of Production Systems. In Proc. of the Third International Con-
ference on Web Reasoning and Rule Systems, LNCS, 254-268, Chantilly,
VA, USA, October 25-26, 2009.

Project Deliverables

• D3.3, Complexity and optimization of combinations of rules and ontologies
Authors: Cristina Feier , Hassan Ait-Kaci, Jurgen Angele , Jos de Bruijn

211

Appendix G

, Hugues Citeau, Thomas Eiter, Adil El Ghali, Volha Kerhet, Eva Kiss,
Roman Korf, Thomas Krekeler, Thomas Krennwallner, Stijn Heymans,
Alessandro Mosca, Mart́ın Rezk, Guohui Xiao.
URL: http://ontorule-project.eu/outcomes?func=finishdown&id=46

• D3.2, Initial combinations of rules and ontologies Stijn Heymans, Jos de
Bruijn, Mart́ın Rezk, Hassan Ait-Kaci, Hugues Citeau, Roman Korf, Jorg
Puhrer, Cristina Feier, Thomas Eiter
URL: http://ontorule-project.eu/outcomes?func=fileinfo&id=18

212

http://ontorule-project.eu/outcomes?func=finishdown&id=46
http://ontorule-project.eu/outcomes?func=fileinfo&id=18

Index

Pactions, 21, 30
Pfluents, 21, 30
T -structure, 104
not , 60
LDL+, 99, 104
neg , 15, 22, 53, 56
Frame(P), 42
A(P), 85
LDL+, 110
T R –, 21, 30, 40, 52
dtg Transformation, 99
A(P), 42
DL, 104
PSs, 95
FOR-rule, 103

ABox, 97, 98
action

base, 61
interpretation, 76
PAD, 31
partial a. definitions, 31
partially defined a., 32
pda, 32
theory, 41, 68, 85

actual path, 77
atomic

action, 103
facts, 75
formula, 102

causal law, 75

clause, 16

complex action, 23, 24, 28, 56

compound action, 23, 28, 109

condition formula, 102

configuration, 110

consequence operator, 18, 66

converging premises, 55

current situation, 74

Datalog-rewritable, 99, 109

default negation, 60

definite T RPAD, 55

Description Logic, 98

domain description, 75

execution path, 25

executional entailment, 27

explicit paths, 79

fluent, 21, 52, 74, 77

base, 23, 32, 52

derived, 23, 32, 52

rules, 31

frame axioms, 5, 37, 41

Herbrand

base, 16, 25

domains, 14, 104

model, 54, 58

213

Index Appendix G

partial H. interpretation, 16, 61
path structure, 26, 34, 61
semantics, 14, 25
structure, 25
universe, 16, 25

Horn LP
logic program, 16
query, 16

hypothesis (L1), 77
hypothetical execution, 22

immediate effect, 77
inertia laws, 41
inference system FH , 40
information ordering, 17, 64
interloping PADs, 41, 68
interpretations, 25

knowledge base, 98

least model, 64
logic program, 15
logic programming, 15, 41, 52, 55
LP-expressible, 99
LP-reduction, 54, 81

minimal model, 17, 78

negation as failure, 60
non-deterministic, 56

oracles (T R), 26
OWL, 101

partial action definitions, 31
partial Herbrand interpretation, 61
partially defined actions, 32
path abstraction, 34
planing, 86
premise, 62

converging, 55
non-deterministic, 55
run p., 33
state p., 33

well-founded, 55
prestructure, 104
primitive

effect, 32
post-condition, 32
pre-effect, 32
precondition, 32

production rule, 103
fireable, 107
FOR, 103
IF-THEN, 103

production systems, 95

query, 16
L1 q. language, 77
T R query, 7, 26
answer, 18
Horn, 16
hypothesis (L1), 77

query L1, 77
quotient, 17, 65

RIF-PRD, 96
run-premise, 33

semantic structures, 14
sequents, 40
serial conjunction, 22
serial-Horn

rule, 31
serial-Horn T R, 28, 52

goal, 28
rule, 28
transaction base, 28

simple domain description, 79
situation (L1), 74
situation assignment, 76
specification, 33, 61
split, 25
state

database, 25, 61
identifiers, 32, 61
s. in L1, 76

214

Index Index

state-premise, 33
strong negation, 15, 21

TBox, 97, 98
transaction base, 22, 32
transition

atomic, 105
consistent, 106
non-trivial, 107

transition graph, 109
truth ordering, 17, 64

unique name assumption, 14, 104

well-founded
model T R, 66
model LP, 18
premises, 55
semantics T R, 61
semantics LP, 16

WFM, 67
working memory, 104

cycle, 107
intermediate, 107

215

	Acknowledgments
	Introduction
	Preliminaries
	First-Order Logic
	Logic Programs
	Transaction Logic

	Transaction Logic With Partially Defined Actions
	Partially Defined Actions and Incomplete Information
	Representing Actions with TRPAD
	A Proof Theory for TRPAD
	Axioms of Inertia and Action Theory
	Reducing Serial-Horn TR– to Logic Programming
	Reducing TRDPAD to Logic Programming
	TRPAD with Default Negation
	Lifting The Interloping Restriction
	Summary of the Contributions

	Modeling Action Languages with TRPAD
	Action Language L1
	Motivating Examples
	Representing L1A in TRPAD
	Planning: L1 vs TRPAD
	Relationship with Other Action Languages
	Considering TRPAD with default negation
	Summary of the Contributions

	Modeling Production Systems
	Background on Description Logic
	Related Work
	Combining Production Systems and Ontologies
	Production Systems in TRPAD
	Summary of the Contributions

	Conclusions
	Inference System F
	Horn-TR– to TRPAD
	Horn-TR– to LP
	TRPAD to LP
	Well-founded Semantics
	L1 to TRPAD
	PS to TRPAD
	Bibliography
	Publications
	Index

